I am trying a different package for this problem because I couldn't figure out dplyr
. Here is my code using Rmisc
package to plot the mean length by sex and region:
LCSummary=summarySE(LabCultures, measurevar = 'Length (mm)', groupvars = c('Region','Sex'))
However, I keep getting this error:
Error in [.data.frame(xx, , col) : undefined columns selected
When I knit the code using Rmarkdown, it says that it can't find the function summarySE
.
Even after getting these errors, if I look at LCSummary
, it gives me columns with sd
, se
, and ci
. Does that mean it worked? I just wasn't sure what that first error message meant.
Thank you.
Here is the data:
dput(LabCultures)
structure(list(Region = c("South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"North", "North", "North", "North", "North", "North", "North",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South", "South", "South", "South", "South", "South", "South",
"South"), Population = c("CCVA", "CCVA", "CCVA", "CCVA", "CCVA",
"CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA",
"CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA",
"CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA",
"CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA",
"CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA", "CCVA",
"CCVA", "CCVA", "CCVA", "Magnolia", "Magnolia", "Magnolia", "Magnolia",
"Magnolia", "Magnolia", "Magnolia", "Magnolia", "Magnolia", "Magnolia",
"Magnolia", "Magnolia", "Magnolia", "Magnolia", "Magnolia", "Magnolia",
"Magnolia", "Magnolia", "Magnolia", "Magnolia", "Magnolia", "Magnolia",
"Magnolia", "Magnolia", "Magnolia", "Magnolia", "Magnolia", "Magnolia",
"Magnolia", "Magnolia", "Magnolia", "Magnolia", "Magnolia", "Magnolia",
"Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant",
"Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant",
"Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant",
"Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant",
"Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant",
"Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant",
"Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant",
"Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant",
"Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant",
"Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "Nahant", "VIMS",
"VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS",
"VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS",
"VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS",
"VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS",
"VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS",
"VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS",
"VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS",
"VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS",
"VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS",
"VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS",
"VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS",
"VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS", "VIMS",
"VIMS", "VIMS"), Sex = c("F", "F", "F", "F", "F", "F", "F", "F",
"F", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M",
"M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M",
"M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M",
"M", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "M", "M", "M", "M", "M",
"M", "M", "M", "M", "M", "M", "M", "M", "M", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M",
"M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M",
"M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F", "F",
"F", "F", "F", "F", "F", "F", "F", "F", "F", "M", "M", "M", "M",
"M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M",
"M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M",
"M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M", "M",
"M", "M", "M", "M", "M", "M", "M", "M"), Length..mm. = c(17,
12.5, 14, 16, 13, 10, 11.5, 13, 10, 18, 18, 14, 18, 14, 12.5,
20, 21, 17, 14.5, 17, 14, 15, 18, 19, 15, 21, 21, 22, 19, 14,
18.5, 14, 15, 14, 16, 13.5, 17, 13, 14.5, 14, 16, 14, 14, 14,
17, 17.5, 17, 21, 19, 19, 18.5, 15.5, 14, 18, 14, 19, 17, 15,
15, 13, 13, 16, 15, 15, 15.5, 15.5, 16, 16.5, 18.5, 19.5, 22.5,
16.5, 20.5, 17, 20, 24.5, 18, 14.5, 26.5, 19, 18.5, 13, 16, 16,
15.5, 16, 16, 17, 18, 19, 17, 18, 15, 15, 16, 16, 16, 15, 13,
14, 16, 15, 16, 14, 17, 14, 14, 14, 14, 14.5, 14.5, 13, 15, 14,
22.5, 16, 20.5, 24, 16, 28, 24, 24, 21, 25, 23, 18.5, 21.5, 21,
19, 21, 20, 18.5, 18, 18, 19, 15, 17, 17, 16, 15, 15, 15, 13,
17, 15, 13, 17, 21, 16, 15, 15, 14.5, 17, 17, 14, 14, 17.5, 13,
13.5, 15, 13.5, 17, 15, 14, 16, 15.5, 15, 14.5, 15, 14, 13, 14,
12.5, 13, 14, 13.5, 14, 13.5, 14.5, 13.5, 15.5, 14, 14, 15, 15.5,
15, 14, 16.5, 12.5, 13, 15, 11, 13, 15, 13, 14, 14, 13, 13, 15,
14.5, 19.5, 20, 20.5, 22, 21, 18.5, 21, 20, 15.5, 20, 15, 19,
18, 17, 21, 17, 20.5, 19, 20, 19.5, 18, 17, 16, 16.5, 19, 18,
19, 15.5, 15, 13.5, 11, 14.5, 14.5, 22, 15.5, 17, 13, 14, 16,
13.5, 15.5, 16, 19.5, 17.5, 18.5, 22.5, 13, 15.5, 19), Width..mm. = c(4,
3, 3, 4.5, 4, 3, 3.5, 3.5, 2.5, 4, 5, 4, 4, 3.5, 3, 5, 5, 4.5,
3, 4, 3.5, 4, 4, 4.5, 3.5, 5, 5, 5, 5, 3, 4.5, 3, 3.5, 3, 4,
3, 4, 2.5, 4, 3.5, 4.5, 3, 3.5, 4, 4.5, 4.5, 4, 6, 6, 5.5, 5.5,
4.6, 4, 5.5, 3.5, 6, 6, 4.6, 4.5, 3, 4, 5, 4, 4.5, 4.5, 4.5,
5, 5, 5, 5.5, 7, 5, 6, 5.5, 5, 8, 5, 4, 8, 6, 5, 3, 4.5, 4.5,
5, 5, 4.5, 5, 5, 5.5, 5, 5, 4, 5, 4.5, 4.5, 5, 5, 4, 4, 4.5,
4, 5, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 6.5, 4, 6, 7, 4, 9, 7,
7, 7, 7, 7, 6, 6, 6, 5, 6, 5, 6, 5, 5, 5, 4, 4.5, 4.5, 5, 4,
4, 4, 4, 5, 4.5, 4, 5, 6, 4.5, 4, 4, 3.5, 4.5, 4.5, 3.5, 4.5,
5, 4, 4, 4, 3.5, 4.5, 3, 3.5, 4.5, 3, 3.5, 4, 4.5, 4, 3.5, 3,
3.5, 3.5, 4, 4, 4, 3.5, 4, 3.5, 4.5, 3.5, 3.5, 3.5, 3.5, 4, 4,
4.5, 3.5, 4, 4.5, 2.5, 4, 4.5, 3.5, 4, 4, 3.5, 4, 4, 3.5, 5,
5.5, 5.5, 5, 5.5, 5, 6, 5, 4, 4.5, 4, 4.5, 4, 4.5, 6, 4, 5, 5,
5, 4.5, 4.5, 4.5, 4, 4, 5, 4, 5, 3.5, 3.5, 3.5, 3, 3.5, 3.5,
6.5, 4, 4, 3.5, 3.5, 4, 4, 4.5, 4, 5, 4.5, 5, 6, 3, 4, 5)), class = "data.frame", row.names = c(NA,
-250L))