1

I'm trying to extract the feature vectors of my dateset (x-ray images) which is trained on Densenet121 CNN for classification using Pytorch. I want to extract the feature vectors from one of the the intermediate layers.

model.eval() -->

DataParallel(
  (module): DenseNet121(
    (densenet121): DenseNet(
      (features): Sequential(
        (conv0): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
        (norm0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
        (relu0): ReLU(inplace=True)
        (pool0): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
        (denseblock1): _DenseBlock(
          (denselayer1): _DenseLayer(
            (norm1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer2): _DenseLayer(
            (norm1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(96, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer3): _DenseLayer(
            (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer4): _DenseLayer(
            (norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer5): _DenseLayer(
            (norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer6): _DenseLayer(
            (norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
        )
        (transition1): _Transition(
          (norm): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
        )
        (denseblock2): _DenseBlock(
          (denselayer1): _DenseLayer(
            (norm1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(128, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer2): _DenseLayer(
            (norm1): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(160, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer3): _DenseLayer(
            (norm1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(192, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer4): _DenseLayer(
            (norm1): BatchNorm2d(224, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(224, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer5): _DenseLayer(
            (norm1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer6): _DenseLayer(
            (norm1): BatchNorm2d(288, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(288, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer7): _DenseLayer(
            (norm1): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(320, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer8): _DenseLayer(
            (norm1): BatchNorm2d(352, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(352, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer9): _DenseLayer(
            (norm1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(384, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer10): _DenseLayer(
            (norm1): BatchNorm2d(416, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(416, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer11): _DenseLayer(
            (norm1): BatchNorm2d(448, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(448, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
          (denselayer12): _DenseLayer(
            (norm1): BatchNorm2d(480, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu1): ReLU(inplace=True)
            (conv1): Conv2d(480, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
            (norm2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
            (relu2): ReLU(inplace=True)
            (conv2): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
          )
        )
        (transition2): _Transition(
          (norm): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
          (relu): ReLU(inplace=True)
          (conv): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
          (pool): AvgPool2d(kernel_size=2, stride=2, padding=0)
        )

I think I have to do some work in the following block of code but I need help to do that.

class DenseNet121(nn.Module):

    def __init__(self, out_size):
        super(DenseNet121, self).__init__()
        self.densenet121 = torchvision.models.densenet121(pretrained = True)
        num_ftrs = self.densenet121.classifier.in_features
        self.densenet121.classifier = nn.Sequential(
            nn.Linear(num_ftrs, out_size),
            nn.Sigmoid()
        )


    def forward(self, x):
        x = self.densenet121(x)

        return x

I want to get the feature vectors and then save them in order to use them later on as an input for another function.

Thank you.

RBYOU
  • 11
  • 1

1 Answers1

0

You probably want to use something like a forward hook. It is basically a function call you can register which is executed when the forward of this specific module is called. So you can register the forward hook at the points in your model where you want to log the input and/or output and write the feature vector into a file or whatever.

Finding out how to bin the correct layer it is looking at the description you posted and going down the tree. So if you want to see the input and output of denseblock1.denselayer2.conv1. It should be something along these lines

model.densenet121.features.denseblock1.denselayer2.conv1

No guarantee that it will work and it is best to try a bit around in a debugger. Maybe you also need to access elements os Sequential via an index with the [] operator or something

Nopileos
  • 1,976
  • 7
  • 17