I am working with secondary data within the survey package in R. I have defined the weight, strata, and cluster using the svydesign function.
mydesign <- svydesign(id=~C17SCPSU, weights=~C1_7SC0,strata=~C17SCSTR,
nest=TRUE, survey.lonely.psu = "adjust",
na.rm=TRUE, data=ECLSK)
There is a very small amount of missing, and these are defined as missing. However, there is NO missing data in the weight, strata, or cluster variables.
ECLSK[ECLSK == "#NULL!"] <- NA
When I compute means on variables that have no missing, the estimates are produced great.
> svymean(~SEX_MALE, mydesign)
mean SE
SEX_MALE 0.51317 0.0196
However, when I compute means for variables with any missing, I get the following (only a snippet is shown).
> svymean(~C1R4MSCL, mydesign)
mean SE
C1R4MSCL10.63 NA NaN
C1R4MSCL11.07 NA NaN
C1R4MSCL11.36 NA NaN
C1R4MSCL11.44 NA NaN
C1R4MSCL11.65 NA NaN
C1R4MSCL11.90 NA NaN
C1R4MSCL12.00 NA NaN
C1R4MSCL12.01 NA NaN
C1R4MSCL12.04 NA NaN
C1R4MSCL12.14 NA NaN
C1R4MSCL12.18 NA NaN
C1R4MSCL12.20 NA NaN
When I completely delete any rows of data with missing from the dataframe itself and re-run, the estimates are computed fine. I have quite a few variables and want to generate estimates using complete case analysis by variable (rather than creating a new dataframe that deletes all rows that have any missing). Suggestions on how to deal with this are greatly appreciated.
Below is dput script for a small sample of the dataframe.
structure(list(CHILDID = c("0015001C", "0015014C", "0015019C", "0015020C", "0015023C", "0015025C", "0015026C", "0021001C", "0021002C", "0022002C", "0022003C", "0022006C", "0022007C", "0022008C", "0022009C", "0022012C", "0022013C", "0022014C", "0022016C", "0022017C", "0022018C", "0022019C", "0022023C", "0022024C", "0023005C", "0023011C", "0023012C", "0023015C", "0023016C", "0023017C", "0023018C", "0023019C", "0023020C", "0023021C", "0023024C", "0025001C", "0025003C", "0025005C", "0025014C", "0025016C", "0025020C", "0025021C", "0025024C", "0028002C", "0028003C", "0028005C", "0028006C", "0028007C", "0028008C", "0028009C", "0028010C", "0028011C", "0028012C", "0028013C", "0028014C", "0037001C", "0037004C", "0037008C", "0037014C", "0037016C", "0037018C", "0037021C", "0040005C", "0040007C", "0040010C", "0040011C", "0040014C", "0040016C", "0040017C", "0040018C", "0040019C", "0040020C", "0040022C", "0040023C", "0044002C", "0044006C", "0044007C", "0044008C", "0044010C", "0044011C", "0044013C", "0044016C", "0044017C", "0044022C", "0045001C", "0045003C", "0045004C", "0045005C", "0045006C", "0045007C", "0045008C", "0045010C", "0045011C", "0045014C", "0045015C", "0045017C", "0045018C", "0045020C", "0045022C", "0049002C", "0049008C", "0049010C", "0049015C", "0049017C", "0049018C", "0049020C", "0052002C", "0052003C", "0052005C", "0052006C", "0052007C", "0052008C", "0052011C", "0052012C", "0052013C", "0052014C", "0052018C", "0052019C", "0053001C", "0053002C", "0053003C", "0053005C", "0053006C", "0053007C", "0053008C", "0053009C", "0053011C", "0053012C", "0053013C", "0053014C", "0053017C", "0053018C", "0053019C", "0053021C", "0053023C", "0053024C", "0055004C", "0055010C", "0055011C", "0055012C", "0055013C", "0055014C", "0055015C", "0055016C", "0055018C", "0055022C", "0055023C", "0055024C", "0056002C", "0056003C"), C1_7SC0 = c(3159.9, 522.86, 622.73, 622.73, 714, 714, 825.03, 645.48, 634.63, 827.54, 721.76, 679.68, 827.54, 721.76, 2527.03, 827.54, 721.76, 679.68, 721.76, 709.63, 679.68, 709.63, 616.36, 679.68, 651.75, 651.75, 747.26, 747.26, 640.79, 640.79, 613.74, 640.79, 747.26, 640.79, 4613.25, 600.95, 598.77, 579.16, 609.01, 609.01, 609.01, 698.26, 598.77, 198.74, 231.77, 231.77, 1502.45, 231.77, 202.14, 202.14, 172.62, 231.77, 198.74, 198.74, 202.14, 176.04, 691.37, 592.86, 420.67, 484.91, 4611.6, 1537.83, 5579.29, 1693.28, 327.12, 5579.29, 454.63, 1357.73, 454.63, 5455.65, 454.63, 446.99, 521.26, 1357.73, 986.2, 986.2, 860.14, 860.14, 1401.07, 2318.41, 860.14, 860.14, 845.68, 845.68, 262.06, 388.14, 388.14, 445.02, 521.06, 2828.12, 445.02, 388.14, 388.14, 388.14, 445.02, 445.02, 388.14, 445.02, 365.51, 802.84, 917.88, 732.35, 12590.7, 917.88, 9657.9, 961.47, 5411.24, 205.27, 235.35, 235.35, 205.27, 235.35, 205.27, 235.35, 6588.46, 235.35, 1749.27, 205.27, 702.04, 836.42, 1018.39, 1018.39, 6441.84, 836.42, 888.21, 873.28, 888.21, 1018.39, 869.67, 1018.39, 888.21, 888.21, 1018.39, 873.28, 873.28, 873.28, 1131.98, 987.29, 987.29, 3456.7, 987.29, 929.72, 1131.98, 987.29, 1131.98, 1131.98, 6111.32, 1131.98, 436.98, 2948.91), C17SCSTR = c(26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L, 26L), C17SCPSU = c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), C1R4MSCL = c("18.21", "31.20", "28.63", "37.81", "13.29", "28.78", "36.24", "24.19", "25.04", "24.67", "19.36", "25.84", "22.22", "26.56", "17.51", "16.13", "15.77", "20.98", "21.98", "15.40", "29.02", "20.65", "26.36", "28.00", "27.99", "28.61", "33.02", "31.74", "28.73", "26.32", "31.50", "30.39", "22.81", "22.07", NA, "34.27", "31.70", "25.64", "27.47", "35.99", "22.84", "21.26", "13.59", "41.16", "24.84", "52.82", "30.27", "33.97", "19.80", "28.08", "32.18", "25.98", "42.62", "29.43", "31.02", "29.53", "26.52", "18.42", "18.27", "12.57", "26.74", "32.63", "35.42", "34.76", NA, "27.98", "30.21", "20.35", "20.52", "27.34", "29.86", "26.75", "18.64", "25.80", "34.74", "93.23", "22.43", "35.76", "28.51", "21.79", "32.10", "47.15", "27.68", "35.73", "32.84", "40.46", "29.92", "32.36", "30.08", "37.57", "31.81", "35.81", "24.62", "26.17", "54.37", "52.18", "30.58", "44.87", "23.13", "16.42", "69.82", NA, "15.87", "32.53", "19.69", "14.63", "20.28", "38.89", "30.28", "38.08", "28.89", "26.27", "24.78", "27.95", "33.45", "20.43", "25.59", "24.11", "27.50", "31.27", "68.49", "39.22", "19.24", "48.78", "42.34", "49.87", "28.21", "31.25", "43.68", "19.19", "26.96", "38.70", "24.19", "30.78", "26.66", "30.28", "18.24", "32.13", "22.93", "31.89", "17.57", "28.53", "23.48", "20.57", "26.60", "68.44", "19.62", "41.77", "24.73", "29.18"), SEX_MALE = c(1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0), C3BMI = c("16.35", "19.06", "15.28", "11.96", "17.09", "15.12", "15.23", "22.76", "16.65", "16.26", "15.10", "22.64", NA, "14.71", "15.12", "18.20", "15.60", "17.82", "17.52", "16.65", "16.45", "15.12", "21.83", "15.99", "18.58", "15.97", "19.07", "16.93", "15.12", "18.87", "21.81", "15.09", "24.40", "16.16", "15.91", "16.74", "20.35", "15.73", "15.75", "17.56", "21.50", "15.33", "19.83", "16.83", "15.62", "19.43", "15.45", "15.89", "16.97", "14.47", "14.96", "18.38", "15.87", "17.95", "14.93", "15.99", "16.34", "15.28", "21.78", "14.73", "13.87", "26.63", NA, "15.79", "15.20", NA, "15.43", "18.12", "15.64", "16.21", "13.76", "16.92", "16.25", "14.95", "17.42", "15.69", "19.37", "14.16", "15.28", "18.50", "16.46", "18.15", "16.02", "18.62", "15.94", "15.03", "17.97", "18.92", "15.94", "17.98", "15.12", "14.93", "15.47", NA, "17.86", "14.94", "16.85", "15.79", NA, "16.81", "18.23", "16.67", "23.55", "19.05", "14.60", "15.20", "16.20", "13.82", "15.92", "16.06", "16.61", "18.37", "15.69", "15.08", "16.41", "14.23", "17.72", "20.54", "19.83", "16.71", "16.58", "16.64", "14.28", "17.84", "11.36", "14.79", "15.67", "16.34", "19.43", "19.88", "18.03", "15.73", "15.48", "14.08", "15.10", "16.63", "15.77", "14.27", "15.35", "17.72", "13.79", "15.03", "15.15", "14.48", "17.23", "15.11", "16.65", "14.33", "16.48", "18.27")), row.names = c(NA, 150L), class = "data.frame")