I think you can replace the for
loop with
CDR3_post_challenge_unique_clonecount$per3 <-
as.integer(
ave(CDR3_post_challenge_unique_clonecount$PartID,
CDR3_post_challenge_unique_clonecount$cdr3aa,
FUN = function(z) length(unique(z)))
)
I'll demonstrate with mtcars
, using the follow analogs:
mtcars
--> CDR3_post_challenge_unique_clonecount
cyl
--> cdr3aa
, the categorical variable in which we want to count PartID
drat
--> PartID
, the thing we want to count (uniquely) within each cdr3aa
mtcars$drat_per_cyl <- ave(mtcars$drat, mtcars$cyl, FUN = function(z) length(unique(z)))
mtcars
# mpg cyl disp hp drat wt qsec vs am gear carb drat_per_cyl
# Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4 5
# Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4 5
# Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 10
# Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 5
# Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2 11
# Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1 5
# Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 11
# Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2 10
# Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 10
# Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 5
# Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4 5
# Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 11
# Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 11
# Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3 11
# Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4 11
# Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 11
# Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4 11
# Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1 10
# Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2 10
# Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1 10
# Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1 10
# Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2 11
# AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2 11
# Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 11
# Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2 11
# Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1 10
# Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2 10
# Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2 10
# Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 11
# Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 5
# Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8 11
# Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 10
Notes:
ave
is a little brain-dead in that the class of the return value is always the same as the class of the first argument. This means that one cannot count unique "character"
and expect to get an integer, it is instead returned as a string. It's because of this that I wrap ave
in as.integer(.)
.
ave
returns a vector the same length as the input, with values corresponding 1-for-1 (meaning the order is relevant and preserved). In my example of mtcars
, this means that it is effectively doing something like this:
ind4 <- which(mtcars$cyl == 4L)
ind4
# [1] 3 8 9 18 19 20 21 26 27 28 32
length(unique(mtcars$drat[ind4]))
# [1] 10
ind6 <- which(mtcars$cyl == 6L)
ind6
# [1] 1 2 4 6 10 11 30
length(unique(mtcars$drat[ind6]))
# [1] 5
### ...
but it will place the return value 10
in the ind4
positions of the return value. For example, because of my ind6
, the return value will start with
c(5, 5, .., 5, .., 5, .., .., .., 5, 5, .., .....)
Because of ind4
, it will contain
c(.., .., 10, .., .., .., .., 10, 10, .....)
(And same for cyl==8L
.)