I'm performing 2 big for loop tasks on a dataframe
column. The context being what I'm calling "text corruption"; turning perfectly structured text into text full of both missing punctuation and misspellings, to mimic human errors.
I found that running 10,000s rows was extremely slow, even after optimizing the for loops.
I discovered a process called Batching, on this post.
The top answer provides a concise template that I imagine is much faster than regular for loop iterations.
How might I use that answer to reimplement the following code? (I added a comment to it asking more about it).
Or; might there be any technique that makes my for loops considerably quicker?
import pandas as pd
import random
import re
# example
df = pd.DataFrame(columns=['Forname', 'Surname', 'Sentence'])
df.loc['0'] = ['Bob', 'Smith', 'Hi, this is a perfectly constructred sentence!']
df.loc['1'] = ['Alice', 'Smith', 'Can you tell this is fake data?']
df.loc['2'] = ['John', 'Smith', 'This poster needs help!']
df.loc['3'] = ['Michael', 'Smith', 'Apparently, this poster is sturggling a bit LOL']
df.loc['4'] = ['Daniel', 'Smith', 'More fake data here; ok.']
df.loc['5'] = ['Sarah', 'Smith', 'Will need to think up of better ideas.']
df.loc['6'] = ['Matthew', 'Smith', 'Love a good bit of Python, me.']
df.loc['7'] = ['Jane', 'Smith', 'Is this a sentence?! (I think so).']
df.loc['8'] = ['Peter', 'Smith', "Remarkable - isn't it?"]
df.loc['9'] = ['Chloe', 'Smith', "Foo Bar... that's all that is left to say."]
print(df)
punctuation_marks = ['?', '…', '!', '.', ',', '—', '–', '–', ':', ';', '\"', '\'', '[', ']', '(', ')', '{', '}']
p = 0.5 # changeable
for idx, string in enumerate(df['Sentence']):
for punc in punctuation_marks:
if punc in string:
CHANCE = (random.randint(1, 100)) / 100
if CHANCE <= p:
df['Sentence'][idx] = string.replace(punc, '')
misspellings_corpus = open('misspellings_corpus.txt', 'r')
misspellings = misspellings_corpus.readlines()
for idx, string in enumerate(df['Sentence']):
word_list = re.sub("[^\w]", " ", string).split() # removes punctuation
for word in word_list:
CHANCE = (random.randint(1, 100)) / 100
try: # break middle for-loop
for ms in misspellings:
if (word in ms) and (CHANCE <= p):
wrong = ms.split('->')[0]
correct = ms.split('->')[1][:-2] # removes '\n'
if ',' in correct: correct = random.choice(my_str.split(',')).strip() # only 1 correct spelling
if correct in string:
df['Sentence'][idx] = string.replace(correct, wrong)
raise StopIteration
except StopIteration: pass
misspellings_corpus.txt
(snippet):
affadvit,affa_dava,afadant,afadavate,afadavid,affidate,affidavent,afftadave,athadavid,affiadait,aphadivode,appidavid,afidaded,affi-davit,affidavat,aphadated,affivadat,afidaviat,affedavit,affiavate,affidaved,afefedavid,affidavate,affavidate,affdated,aphidavit,affevivat,affided,affadavid,attipdavid,affidavidit,affidavite,affadivate,affidavited,afdiodave,affidafet,affidivit,afadafit,affedit,afadavide,afidefed,Affi_David,affividate,affaidivit,afidiated,affidovt,affadavat,avadavate,effidavit,afidavit,aphadavid,afedaved,afardivient,apitated,affividative,affedaivite,afteradeated,Afi_David,acavated,affedated,affidevit,affidivat,afaedaviate,affedaved,afatait,afedative,avidated,afidavid,avidiate,afadavit,affedave,affedavid,afidaved,affavidit,afidated,afidavite,afodivid,affidated,afadiadid,affidaphet,affidatet,athadiet,afidabit,affidait,afadated,affadivit,affadavit,afadivite,affidavid,affadapfed,affdavit,aphedavid,athadavit,adivide,afdavit,afedavit,afadiatet,alpadavid,afadaviate,affadivid,aftedavid,affadavite,affadavate,apadenment,aphadavet->affidavit
anverrsy,aneversary,anneversies,anniversity,anavuature,annevarcery,annerfversy,anervery,annaversary,anverserice,annaversery,Anniversary,anivrsary,ananersery,anaversie,anniverserie,annaversity,anifurcaty,anenany,anavirsary,aniversy,anverseary,annervesary,annerverarcy,anaveres,anerviersy,aneversy,aniversary,anivesery,anneversers,anirversary,anniversy,aniversere,aneversere,annaversrey,anavorasy,annversary,aniversiry,anerversurey,Amanversery,anniversery,aniversery,anniversiory,anniversily,anneversary,aneversiary,anaversery,anaversity,anniverserys,anerversary,anniverseray,aniverseray,anniverary,anivessery,anaversarie,aniversity,Annyver,annervirsary,anniversty,annevyercy,aniverusy,anarversieiy,onniver,anaversy,anversity,anaveje,anversicy,anniversay,anerversee,aneversarry,anifersery,anversy,aneversery,annaversiry,annivirsary,annivercery,anvesy,anvertery,annversy,anevers,anniverisy,aneversory,anternesery,avernity,Eenarcrsity,anivarisy,aniverserary,annaverserie,anniversaries,aniversay,anyversary,ananversery,annivesrey,anniversiry,annivesry,anniverscy,annerversery,amryvercary,anneversery,anerversery,anversa,anmersersy,aneversitey,aniversry,aniverserry->anniversary
Ane->And
agenst->agents
eeg,agg->egg
Note: I can paste more example lines if wanted.