You want to solve a mixed-integer linear programming problem (MILP), which aren't supported yet by scipy.optimize.
However, you can use a modelling package like PuLP to formulate your MILP and pass it to a MILP solver. Note that your MIP can be formulated as
(P)
min |f(x)| = |d_0 * x_0 + ... + d_n * x_n|
s.t. x_i ∈ {-1, 1} ∀ i = 0,...,n
which is the same as
(P')
min |f(x)| = |d_0 * (2*x_0 - 1) + ... + d_n * (2*x_n - 1)|
s.t. x_i ∈ {0, 1} ∀ i = 0,...,n
and can be implemented like this
min abs_obj
s.t. f(x) <= abs_obj
f(x) >= -1.0*abs_obj
x_i ∈ {0, 1} ∀ i = 0,...,n
In code:
import pulp
import random
data = random.sample(range(1, 100), 5)
# pulp model
mdl = pulp.LpProblem("our_model", sense=pulp.LpMinimize)
# the binary variables x
x = pulp.LpVariable.dicts("x", range(5), cat="Binary")
# the variable that stores the absolute value of the objective
abs_obj = pulp.LpVariable("abs_obj")
# set the MIP objective
mdl += abs_obj
# Define the objective: |f(x)| = abs_obj
mdl += pulp.lpSum((2 * x[i] - 1) * data[i] for i in range(5)) <= abs_obj
mdl += pulp.lpSum((2 * x[i] - 1) * data[i] for i in range(5)) >= -1.0*abs_obj
# solve the problem
mdl.solve()
# your solution
signs = [1 if var.varValue > 0 else -1 for var in x.values()]
Alternatively, if you don't want to use another package, you can use scipy.optimize.minimize
and implement a simple penalty method. Thereby you solve the problem (P') by solving the penalty problem
min |f(x)| + Ɛ * (x_0 * (1 - x_0) + ... + x_n * (1 - x_n))
with 0 <= x_i <= 1
where Ɛ
is a given penalty parameter. Here, the idea is that the right penalty term equals zero for an integer solution.
Note that as the case may be that you need to solve a sequence of penalty problems to achieve convergence to an integer solution. Thus, I'd highly recommend sticking to a MILP solver instead of implementing a penalty method on your own.