I am trying to learn some facial landmark detection model, and notice that many of them use NME(Normalized Mean Error) as performance metric:
The formula is straightforward, it calculate the l2 distance between ground-truth points and model prediction result, then divided it by a normalized factor, which vary from different dataset.
However, when adopting this formula on some landmark detector that some one developed, i have to deal with this non-trivial situation, that is some detector may not able to generate enough number landmarks for some input image(might because of NMS/model inherited problem/image quality etc). Thus some of ground-truth points might not have their corresponding one in the prediction result.
So how to solve this problem, should i just add such missing point result to "failure result set" and use FR to measure the model, and ignore them when doing the NME calculation?