I want to sum up data across overlapping bins. Basically the question here but instead of the bins being (0-8 years old), (9 - 17 years old), (18-26 years old), (27-35 years old), and (26 - 44 years old) I want them to be (0-8 years old), (1 - 9 years old), (2-10 years old), (3-11 years old), and (4 - 12 years old).
Starting with a df like this
id | awards | age |
---|---|---|
1 | 100 | 24 |
1 | 150 | 26 |
1 | 50 | 54 |
2 | 193 | 34 |
2 | 209 | 50 |
I am using the code from this answer to calculate summation across non-overlapping bins.
bins = [9 * i for i in range(0, df['age'].max() // 9 + 2)]
cuts = pd.cut(df['age'], bins, right=False)
print(cuts)
0 [18, 27)
1 [18, 27)
2 [54, 63)
3 [27, 36)
4 [45, 54)
Name: age, dtype: category
Categories (7, interval[int64, left]): [[0, 9) < [9, 18) < [18, 27) < [27, 36) < [36, 45) < [45, 54) < [54, 63)]
df_out = (df.groupby(['id', cuts])
.agg(total_awards=('awards', 'sum'))
.reset_index(level=0)
.reset_index(drop=True)
)
df_out['age_interval'] = df_out.groupby('id').cumcount()
Result
print(df_out)
id total_awards age_interval
0 1 0 0
1 1 0 1
2 1 250 2
3 1 0 3
4 1 0 4
5 1 0 5
6 1 50 6
7 2 0 0
8 2 0 1
9 2 0 2
10 2 193 3
11 2 0 4
12 2 209 5
13 2 0 6
Is it possible to work off the existing code to do this with overlapping bins?