In this Modern C video there's a trick that allows to postpone execution of a code until the block/scope exits. It's used as follows:
int main()
{
int foo=0, bar;
const char *etc = "Some code before defer";
defer(profile_begin(), profile_end())
{
/* Some code, which will be automatically
* preceded by call to profile_begin() and
* followed by run of profile_end().*/
foo++;
bar = 1;
}
etc = "Some code after defer";
foo = bar + 1;
}
Implementation from the video:
#define macro_var_line(name) concat(name, __LINE__)
#define defer(start,end) for( \
int macro_var_line(done) = (start,0); \
!macro_var_line(done); \
(macro_var_line(done) += 1), end)
It's pretty simply implemented. What might be confusing is the macro_var_line(name)
macro. Its purpose is to simply ensure that a temporary variable will have a unique, "obfuscated" name by adding current line number to it (of where defer is called).
However the problem is that one cannot pass code to start
snippet that declares new variables, because it is pasted in the for() comma operator that uses int
type (the int macro_var_line(done) = …
). So it's not possible to, eg.:
defer(FILE *f = fopen("log.txt","a+"), fclose(f))
{
fprintf(f,"Some message, f=%p",f);
}
I would want to have such macro, capable of declaring new vars in start
snippet. Is it achievable with standard C99, C11 or maybe some GCC extensions?
UPDATE: I've found a solution utilizing GCC nested functions. Basically, the { bblock }
that's following the defer()
macro becomes nested function body. And it's possible to forward declare the nested function and invoke it from before the block, i.e.:
#define defer(start,end) \
auto void var_line(routine) (void); \
start; \
/* Invoke above predeclared void routine_123(void) function */ \
var_line(routine)(); \
end; \
/* Define the nested function */ \
void var_line(routine) (void)
UPDATE2: Here's an elegant version which:
- runs first leading statements as start and the last one as the end code,
- runs the very first statement in its own
for()
/declarative space, - runs the block properly via an
if(cond == 0)
check/block start up.
#define defer(...) \
for (int var_line(cond) = 0; var_line(cond) == 0; ) \
for (FIRST_ARG(__VA_ARGS__); var_line(cond) == 0; ) \
for (SKIP_LAST_ARG(SKIP_FIRST_ARG(__VA_ARGS__)); \
var_line(cond) == 0; \
var_line(cond) += 1 ) \
for (int var_line(cond_int) = 0; \
var_line(cond_int) <= 1; \
var_line(cond_int) += 1 ) \
if (var_line(cond_int) == 1) \
{ \
LAST_ARG(__VA_ARGS__); \
} else if (var_line(cond_int) == 0)