hi i'm going through pytorch tutorial about transfer learning. (https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html)
what is model.training for??
enter def visualize_model(model,num_images=6):
was_training=model.training
model.eval()
images_so_far=0
fig=plt.figure()
with torch.no_grad():
for i, (inputs,labels) in enumerate(dataloaders['val']):
inputs=inputs.to(device)
labels=labels.to(device)
outputs=model(inputs)
_,pred=torch.max(outputs,1)
for j in range(inputs.size()[0]):
images_so_far+=1
ax=plt.subplot(num_images//2,2,images_so_far)
ax.axis('off')
ax.set_title('predicted: {}'.format(class_names[preds[j]]))
imshow(inputs.cpu().data[j])
if images_so_far==num_images:
model.train(mode=was_training)
return
model.train(mode=was_training)code here
i cannot understand "model.train(model=was_training)". any help?? thank you so much