That question has no answer in a mathematical/logical sense. You have to read how floating point numbers in computers work, see e.g.
https://en.wikipedia.org/wiki/Floating-point_arithmetic
and understand that they are not decimal point numbers in memory. A floating point number in memory consists of three actual numbers: significant * base^{exponent}
and according to IEEE the base used is "2" in basically any modern floating point data, but in even more generality, the base can be anything. Thus, whatever you have in your mind, or even see on your screen as output, is a misleading representation of the data in memory. Your question is, thus, mainly a misconception of how floating point numbers in computers work...
Thus, what you specifically ask for does in general not exist and cannot be done.
However, there may be special application for output formatting or whatever where something like this may make sense -- but then the specific goal must be clearly stated in the question here. And in some of such cases, using a "string-based" approach, as you suggested, will work. But this is not an answer to your generic question and has the high potential to also mislead others in the future.
Actually, one way to make your question obvious and clear is to also specify a fixed desired precision, thus, numbers after the decimal point. Then the answer is quite trivially and correctly:
long int value = fraction * pow(10, precision);
In this scenario you know 100% what your are doing. And if you really like you could subsequently remove zeros from the right side...
int nTrailingZeros = 0;
while (value%10 == 0) {
value /= 10;
++nTrailingZeros;
}
However there is another principle problem on a numerical level: there is no mathematical difference between, e.g., 000003
and just 3
, thus in any such application the input 0.000003
will give the same results as 0.0003
or 0.3
etc. This cannot be a desired functionality... it is pretty useless to ask about the *value of the fractional part of a floating point number. But, since we have a known
precision`, we can do:
cout << setw(precision-ntrailing) << setfill('0') << value << endl;
which will fill in the eventually missing leading zeros.
See this complete tested test code
#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;
int main() {
double v = 0.0454243252;
int precision = 14;
long int value = v*pow(10,precision);
cout << value << endl;
// 4542432520000
int nTrailingZeros = 0;
while (value%10 == 0) {
value /= 10;
++nTrailingZeros;
}
cout << value << endl;
// 454243252
cout << setw(precision-ntrailing) << setfill('0') << value << endl;
// 0454243252
}