This is the hangup:
>>> math.fmod(9/50, 1/50)
0.01999999999999999
That is, the remainder is not 0 when computed to infinite precision. Remember that things like 1/50
are represented internally as binary approximations to the decimal values. Operations like //
and fmod()
see the approximations.
A consequence:
>>> divmod(9/50, 1/50)
(8.0, 0.01999999999999999)
The first part of that tuple (8.0) is what //
returns.
These are the exact values you're working with (every binary float can be represented exactly as a decimal float, but not always vice versa):
>>> import decimal
>>> decimal.getcontext().prec = 500
>>> a = decimal.Decimal(9 / 50)
>>> a
Decimal('0.179999999999999993338661852249060757458209991455078125')
>>> b = decimal.Decimal(1 / 50)
>>> b
Decimal('0.0200000000000000004163336342344337026588618755340576171875')
Then you can see that their quotient is very close to, but strictly less than, 9:
>>> a / b
Decimal('8.9999999999999994795829572069578825097785927606294264409785130112132181330918190728686667562468053202101562430796913250703133371819349483407279064891778548444542555094951793065257796799431977448531572173096496447578542537338521354220252562619824630430214685714904931305685046145118086722731059777831001898809747580797140817173965632373555310050843739628587610364851425663859425151431557846221951824825835845421021824148219867951326908196293925437792528353996177649543157087221511093517505990964829850')
That's why //
returns 8. The remainder then is:
>>> a - 8*b
Decimal('0.0199999999999999900079927783735911361873149871826171875000')
>>> float(_)
0.01999999999999999
If you can't live with shallow surprises like this when working with conceptual decimal numbers, use the decimal
module instead. The nature of binary floating-point isn't going to change ;-)