1

I have this simple Python code that detects face emotions from the camera feed video (took it from here in case you need to run it), for instance, if the person is Sad, Happy, etc.

How can I edit the code to display a logo on top right when the prediction was happy for specific duration of time (or 10 times in a row)?

You'll only need to change the last few lines as the initial parts are all for predictions.

import numpy as np
import argparse
import matplotlib.pyplot as plt
import cv2
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.layers import MaxPooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

# command line argument
ap = argparse.ArgumentParser()
ap.add_argument("--mode",help="train/display")
mode = ap.parse_args().mode

# plots accuracy and loss curves
def plot_model_history(model_history):
    """
    Plot Accuracy and Loss curves given the model_history
    """
    fig, axs = plt.subplots(1,2,figsize=(15,5))
    # summarize history for accuracy
    axs[0].plot(range(1,len(model_history.history['accuracy'])+1),model_history.history['accuracy'])
    axs[0].plot(range(1,len(model_history.history['val_accuracy'])+1),model_history.history['val_accuracy'])
    axs[0].set_title('Model Accuracy')
    axs[0].set_ylabel('Accuracy')
    axs[0].set_xlabel('Epoch')
    axs[0].set_xticks(np.arange(1,len(model_history.history['accuracy'])+1),len(model_history.history['accuracy'])/10)
    axs[0].legend(['train', 'val'], loc='best')
    # summarize history for loss
    axs[1].plot(range(1,len(model_history.history['loss'])+1),model_history.history['loss'])
    axs[1].plot(range(1,len(model_history.history['val_loss'])+1),model_history.history['val_loss'])
    axs[1].set_title('Model Loss')
    axs[1].set_ylabel('Loss')
    axs[1].set_xlabel('Epoch')
    axs[1].set_xticks(np.arange(1,len(model_history.history['loss'])+1),len(model_history.history['loss'])/10)
    axs[1].legend(['train', 'val'], loc='best')
    fig.savefig('plot.png')
    plt.show()

# Define data generators
train_dir = 'data/train'
val_dir = 'data/test'

num_train = 28709
num_val = 7178
batch_size = 64
num_epoch = 50

train_datagen = ImageDataGenerator(rescale=1./255)
val_datagen = ImageDataGenerator(rescale=1./255)

train_generator = train_datagen.flow_from_directory(
        train_dir,
        target_size=(48,48),
        batch_size=batch_size,
        color_mode="grayscale",
        class_mode='categorical')

validation_generator = val_datagen.flow_from_directory(
        val_dir,
        target_size=(48,48),
        batch_size=batch_size,
        color_mode="grayscale",
        class_mode='categorical')

# Create the model
model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(48,48,1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))

model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))

# If you want to train the same model or try other models, go for this
if mode == "train":
    model.compile(loss='categorical_crossentropy',optimizer=Adam(lr=0.0001, decay=1e-6),metrics=['accuracy'])
    model_info = model.fit_generator(
            train_generator,
            steps_per_epoch=num_train // batch_size,
            epochs=num_epoch,
            validation_data=validation_generator,
            validation_steps=num_val // batch_size)
    plot_model_history(model_info)
    model.save_weights('model.h5')

# emotions will be displayed on your face from the webcam feed
elif mode == "display":
    model.load_weights('model.h5')

    # prevents openCL usage and unnecessary logging messages
    cv2.ocl.setUseOpenCL(False)

    # dictionary which assigns each label an emotion (alphabetical order)
    emotion_dict = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"}

    # start the webcam feed
    cap = cv2.VideoCapture(1)
    while True:
        # Find haar cascade to draw bounding box around face
        ret, frame = cap.read()
        if not ret:
            break
        facecasc = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
        faces = facecasc.detectMultiScale(gray,scaleFactor=1.3, minNeighbors=5)

        for (x, y, w, h) in faces:
            cv2.rectangle(frame, (x, y-50), (x+w, y+h+10), (255, 0, 0), 2)
            roi_gray = gray[y:y + h, x:x + w]
            cropped_img = np.expand_dims(np.expand_dims(cv2.resize(roi_gray, (48, 48)), -1), 0)
            prediction = model.predict(cropped_img)
            maxindex = int(np.argmax(prediction))
            text = emotion_dict[maxindex]

            if ("Happy" in text) or ("Sad" in text):
                cv2.putText(frame, text, (x+20, y-60), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2, cv2.LINE_AA)

        cv2.imshow('Video', cv2.resize(frame,(1600,960),interpolation = cv2.INTER_CUBIC))
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    cv2.destroyAllWindows()
Tina J
  • 4,983
  • 13
  • 59
  • 125
  • 1
    with transparency? https://github.com/opencv/opencv/issues/20780 without transparency? just assign to a slice of `frame` that is as large as the overlay/logo, like `frame[y:y+h, x:x+w] = the_logo` – Christoph Rackwitz Oct 05 '21 at 23:15
  • Just basic. No transparency is needed. Can you please post an answer so I give you best answer credit? – Tina J Oct 06 '21 at 01:04
  • @ChristophRackwitz any updates on this? – Tina J Oct 06 '21 at 17:24
  • *half* of this question is now mostly equivalent to https://stackoverflow.com/questions/69453623/how-to-insert-a-frame-around-video-capture-in-python the other half consists of keeping a history of predictions, calculating statistics (are all predictions the same), and then reacting to that – Christoph Rackwitz Oct 06 '21 at 22:14
  • I figured out the logo insertion part. Now only the history and statistic is remaining. I would need your helps! – Tina J Oct 07 '21 at 01:17
  • @TinaJ I believe that was already answered in your other question – Schalton Oct 07 '21 at 16:53

0 Answers0