I don't know how i pivot table in picture one to square matrix in table 2.
Value is distinct count anonymous_id
Want to know how many users join in event voucher denied
and item_checkout_started
, etc. ?
Thanks!
I don't know how i pivot table in picture one to square matrix in table 2.
Value is distinct count anonymous_id
Want to know how many users join in event voucher denied
and item_checkout_started
, etc. ?
Thanks!
pivot require 3 argumnts:
df.pivot(index=["anonymous_id"], columns=["list_event_n"],values="at")
You can try .pivot_table()
with aggfunc='count'
to count the number of occurrences of anonymous_id
, as folllows:
df.pivot_table(index='list_event_n', columns='list_event_n', values='anonymous_id', aggfunc='count')
Result:
list_event_n item_checkout_started item_viewed outlet_list_viewed outlet_product_clicked outlet_promo_clicked popup_registered popup_viewed product_clicked product_list_viewed product_searched product_viewed promotion_viewed item_checkout_started item_viewed outlet_list_viewed outlet_product_clicked outlet_promo_clicked popup_registered popup_viewed product_clicked product_list_viewed product_searched product_viewed promotion_viewed
list_event_n
item_checkout_started 1.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
item_viewed NaN 15.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 15.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
outlet_list_viewed NaN NaN 2.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN
outlet_product_clicked NaN NaN NaN 1.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN NaN NaN NaN NaN
outlet_promo_clicked NaN NaN NaN NaN 7.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 7.0 NaN NaN NaN NaN NaN NaN NaN
popup_registered NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN NaN NaN
popup_viewed NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 1.0 NaN NaN NaN NaN NaN
product_clicked NaN NaN NaN NaN NaN NaN NaN 17.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 17.0 NaN NaN NaN NaN
product_list_viewed NaN NaN NaN NaN NaN NaN NaN NaN 7.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 7.0 NaN NaN NaN
product_searched NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.0 NaN NaN
product_viewed NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 16.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 16.0 NaN
promotion_viewed NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 2.0