Here's a no-loop approach. I map the data
onto a nan
filled array using idx
. Then use some of the np.nan...
functions to perform the math in a way that excludes the nan
.
In [102]: idx=np.array([3, 2, 1, 2, 3, 3 ])
In [103]: data=np.array([3.1, 2.2, 1.1, 2.1, 3.3, 3.2])
In [104]: res[np.arange(6),idx-1]=data
In [105]: res
Out[105]:
array([[nan, nan, 3.1],
[nan, 2.2, nan],
[1.1, nan, nan],
[nan, 2.1, nan],
[nan, nan, 3.3],
[nan, nan, 3.2]])
In [106]: np.nanmean(res, axis=0)
Out[106]: array([1.1 , 2.15, 3.2 ])
In [107]: res-np.nanmean(res, axis=0)
Out[107]:
array([[ nan, nan, -1.0000000e-01],
[ nan, 5.0000000e-02, nan],
[ 0.0000000e+00, nan, nan],
[ nan, -5.0000000e-02, nan],
[ nan, nan, 1.0000000e-01],
[ nan, nan, -4.4408921e-16]])
In [108]: np.abs(res-np.nanmean(res, axis=0))
Out[108]:
array([[ nan, nan, 1.0000000e-01],
[ nan, 5.0000000e-02, nan],
[0.0000000e+00, nan, nan],
[ nan, 5.0000000e-02, nan],
[ nan, nan, 1.0000000e-01],
[ nan, nan, 4.4408921e-16]])
In [109]: np.nansum(np.abs(res-np.nanmean(res, axis=0)), axis=0)
Out[109]: array([0. , 0.1, 0.2])
Mapping onto a 0 filled array might also work, since sum
etc isn't bothered by excess 0s.
I can't vouch for the speed.
Your code with the missing result!
In [110]: a = np.sort(np.array((idx,data)))
...: a_0 = np.unique(a[0,:])
...:
...: result = []
...: for b in a_0:
...: a_1 = np.extract(a[0,:]==b,a[1,:])
...: result.append(np.sum(np.abs(a_1-np.mean(a_1))))
In [111]: result
Out[111]: [0.0, 0.10000000000000009, 0.20000000000000018]