Note that for some dates/categories, the coefficient values are negative, as for 06/07/2021 in category FDE
and ABC
, which gave -0.74 and -0.51. So, I would like to know if it is possible that when the coefficients are negative, these values are replaced by 0. How can I do this?
library(dplyr)
df1 <- structure(
list(date1= c("2021-06-28","2021-06-28","2021-06-28","2021-06-28","2021-06-28"),
date2 = c("2021-06-29","2021-06-29","2021-07-06","2021-07-06","2021-07-06"),
Category = c("FDE","ABC","FDE","ABC","DDE"),
Week= c("Tuesday","Tuesday","Tuesday","Tuesday","Tuesday"),
DR1 = c(4,1,0,2,2),
DR01 = c(4,1,0,3,2), DR02= c(4,2,0,2,4),DR03= c(9,5,0,7,1),
DR04 = c(5,4,0,2,1),DR05 = c(5,4,0,4,1),
DR06 = c(2,4,0,2,4),DR07 = c(2,5,3,4,5),
DR08 = c(3,4,5,4,4),DR09 = c(2,3,7,4,5),DR10 = c(2,3,9,4,5),DR13 = c(2,3,10,4,5)),
class = "data.frame", row.names = c(NA, -5L))
return_coef <- function(dmda, CategoryChosse) {
x<-df1 %>% select(starts_with("DR0"))
x<-cbind(df1, setNames(df1$DR1 - x, paste0(names(x), "_PV")))
PV<-select(x, date2,Week, Category, DR1, ends_with("PV"))
med<-PV %>%
group_by(Category,Week) %>%
summarize(across(ends_with("PV"), median))
SPV<-df1%>%
inner_join(med, by = c('Category', 'Week')) %>%
mutate(across(matches("^DR0\\d+$"), ~.x +
get(paste0(cur_column(), '_PV')),
.names = '{col}_{col}_PV')) %>%
select(date1:Category, DR01_DR01_PV:last_col())
SPV<-data.frame(SPV)
mat1 <- df1 %>%
filter(date2 == dmda, Category == CategoryChosse) %>%
select(starts_with("DR0")) %>%
pivot_longer(cols = everything()) %>%
arrange(desc(row_number())) %>%
mutate(cs = cumsum(value)) %>%
filter(cs == 0) %>%
pull(name)
(dropnames <- paste0(mat1,"_",mat1, "_PV"))
SPV <- SPV %>%
filter(date2 == dmda, Category == CategoryChosse) %>%
select(-any_of(dropnames))
datas<-SPV %>%
filter(date2 == ymd(dmda)) %>%
group_by(Category) %>%
summarize(across(starts_with("DR0"), sum)) %>%
pivot_longer(cols= -Category, names_pattern = "DR0(.+)", values_to = "val") %>%
mutate(name = readr::parse_number(name))
colnames(datas)[-1]<-c("Days","Numbers")
datas <- datas %>%
group_by(Category) %>%
slice((as.Date(dmda) - min(as.Date(df1$date1) [
df1$Category == first(Category)])-2):max(Days)+1) %>%
ungroup
m<-df1 %>%
group_by(Category,Week) %>%
summarize(across(starts_with("DR1"), mean))
m<-subset(m, Week == df1$Week[match(ymd(dmda), ymd(df1$date2))] & Category == CategoryChosse)$DR1
if (nrow(datas)<=2){
as.numeric(m)
}
else{
mod <- nls(Numbers ~ b1*Days^2+b2,start = list(b1 = 0,b2 = 0),data = datas, algorithm = "port")
as.numeric(coef(mod)[2])
}
}
cbind(df1 %>% select(date2, Category), coef = mapply(return_coef, df1$date2, df1$Category))
date2 Category coef
1 2021-06-29 FDE 5.3478916
2 2021-06-29 ABC 1.3694779
3 2021-07-06 FDE -0.7451236
4 2021-07-06 ABC -0.5182055
5 2021-07-06 DDE 2.0000000