I am cleaning my data for a machine learning project by replacing the missing values with the zeros and the mean for the 'Age' and 'Fare' columns respectively. The code for which is given below:
train_data['Age'] = train_data['Age'].fillna(0)
mean = train_data['Fare'].mean()
train_data['Fare'] = train_data['Fare'].fillna(mean)
Since I would I have to do this multiple times for other sets of data, I want to automate this process by creating a generic function that takes the DataFrame as input and performs the operations for modifying it and returning the modified function. The code for that is given below:
def data_cleaning(df):
df['Age'] = df['Age'].fillna(0)
fare_mean = df['Fare'].mean()
df['Fare'] = df['Fare'].fillna()
return df
However when I pass the training data DataFrame:
train_data = data_cleaning(train_data)
I get the following error:
/opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:2:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-
docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
/tmp/ipykernel_42/1440633985.py in <module>
1 #print(train_data)
----> 2 train_data = data_cleaning(train_data)
3 cross_val_data = data_cleaning(cross_val_data)
/tmp/ipykernel_42/3053068338.py in data_cleaning(df)
2 df['Age'] = df['Age'].fillna(0)
3 fare_mean = df['Fare'].mean()
----> 4 df['Fare'] = df['Fare'].fillna()
5 return df
/opt/conda/lib/python3.7/site-packages/pandas/util/_decorators.py in wrapper(*args,
**kwargs)
309 stacklevel=stacklevel,
310 )
--> 311 return func(*args, **kwargs)
312
313 return wrapper
/opt/conda/lib/python3.7/site-packages/pandas/core/series.py in fillna(self, value,
method, axis, inplace, limit, downcast)
4820 inplace=inplace,
4821 limit=limit,
-> 4822 downcast=downcast,
4823 )
4824
/opt/conda/lib/python3.7/site-packages/pandas/core/generic.py in fillna(self, value,
method, axis, inplace, limit, downcast)
6311 """
6312 inplace = validate_bool_kwarg(inplace, "inplace")
-> 6313 value, method = validate_fillna_kwargs(value, method)
6314
6315 self._consolidate_inplace()
/opt/conda/lib/python3.7/site-packages/pandas/util/_validators.py in
validate_fillna_kwargs(value, method, validate_scalar_dict_value)
368
369 if value is None and method is None:
--> 370 raise ValueError("Must specify a fill 'value' or 'method'.")
371 elif value is None and method is not None:
372 method = clean_fill_method(method)
ValueError: Must specify a fill 'value' or 'method'.
On some research, I found that I would have to use apply() and map() functions instead, but I am not sure how to input the mean value of the column. Furthermore, this does not scale well as I would have to calculate all the fillna values before inputting them into the function, which is cumbersome. Therefore I want to ask, is there better way to automate data cleaning?