This is another of those cases where it is good to emphasize the A of CAS and let it help you as you work through the problem by hand:
_ solve first equation for r**2
>>> from sympy import solve
>>> r2 = solve(Eq_1, r**2)
_ substitute into the other two equations and expand them
>>> eqs = [i.subs(r**2, r2[0]).expand() for i in (Eq_2, Eq_3)]
_ see what you've get
>>> eqs
[Eq(-31.62*x_m + 0.02*z_m + 249.9362, 0), Eq(-47.6*x_m + 0.04*z_m + 566.4004, 0)]
_ That's two linear equations. Solve with solve
-- nonlinsolve
is not needed
>>> xz = solve(eqs); xz
{x_m: -4.25370843989770, z_m: -19221.9230434783}
_ substitute into r2 and set equal to r**2
and solve for r
>>> ris = solve(Eq(r**2, r2[0].subs(xz))); ris
[-19222.9235141152, 19222.9235141152]
_ collect the solutions
soln = []
>>> for i in ris:
... xz[r] = i
... soln.append(xz)
...
>>> soln
[{x_m: -4.25370843989770, z_m: -19221.9230434783, r: -19222.9235141152},
{x_m: -4.25370843989770, z_m: -19221.9230434783, r: 19222.9235141152}]
[print out has been edited for viewing pleasure]
When solving nonlinear systems, try reduce the number of systems that you have to deal with. Eliminate linear variables for sure -- other (r**2
in this case) if possible -- before trying to solve the nonlinear parts.
The very large numbers obtained when solving all 3 at once might be a reflection of the ill-posed nature of the system ("not well conditioned" as Oscar noted. Perhaps the problem was designed to teach that point.