You could define a class to hold binary tree nodes and build the tree as the result of the recursive fibonacci function:
class BNode:
def __init__(self,value,left=None,right=None):
self.value = value
self.left = left
self.right = right
def print(self):
printBTree(self,nodeInfo=lambda n:(str(n.value),n.left,n.right))
from functools import lru_cache
@lru_cache() # optimize object count
def fiboTree(n): # (n is an index, not a count)
if n<2: return BNode(n)
a,b = fiboTree(n-2),fiboTree(n-1)
return BNode(a.value+b.value,a,b)
Output:
fiboTree(7).print()
13
____________/ \____________
5 8
_____/ \____ _______/ \______
2 3 3 5
/ \ __/ \_ __/ \_ _____/ \____
1 1 1 2 1 2 2 3
/ \ / \ / \ / \ / \ / \ __/ \_
0 1 0 1 1 1 0 1 1 1 1 1 1 2
/ \ / \ / \ / \ / \
0 1 0 1 0 1 0 1 1 1
/ \
0 1
You can find the printBTree
function here
If you only need to illustrate the call hierarchy, you can use the printBTree function directly:
def fibo(n):
n=int(n) # linking with strings to let zero come out as a node
return (f"fibo({n})",[None,str(n-2)][n>1], [None,str(n-1)][n>1])
printBTree(5,fibo)
fibo(5)
____________/ \____________
fibo(3) fibo(4)
/ \ _____/ \____
fibo(1) fibo(2) fibo(2) fibo(3)
/ \ / \ / \
fibo(0) fibo(1) fibo(0) fibo(1) fibo(1) fibo(2)
/ \
fibo(0) fibo(1)
To print as you go, I would suggest using indentation to convey the call hierarchy otherwise the repeated additions will be hard to relate to their callers.
def fibo(n,indent=""):
if n<2: return n
print(indent[:-3] + "|_ "*bool(indent)
+ f"fibo({n}) = fibo({n-2}) + fibo({n-1})")
return fibo(n-2,indent+"| ")+fibo(n-1,indent+" ")
fibo(7)
fibo(7) = fibo(5) + fibo(6)
|_ fibo(5) = fibo(3) + fibo(4)
| |_ fibo(3) = fibo(1) + fibo(2)
| | |_ fibo(2) = fibo(0) + fibo(1)
| |_ fibo(4) = fibo(2) + fibo(3)
| |_ fibo(2) = fibo(0) + fibo(1)
| |_ fibo(3) = fibo(1) + fibo(2)
| |_ fibo(2) = fibo(0) + fibo(1)
|_ fibo(6) = fibo(4) + fibo(5)
|_ fibo(4) = fibo(2) + fibo(3)
| |_ fibo(2) = fibo(0) + fibo(1)
| |_ fibo(3) = fibo(1) + fibo(2)
| |_ fibo(2) = fibo(0) + fibo(1)
|_ fibo(5) = fibo(3) + fibo(4)
|_ fibo(3) = fibo(1) + fibo(2)
| |_ fibo(2) = fibo(0) + fibo(1)
|_ fibo(4) = fibo(2) + fibo(3)
|_ fibo(2) = fibo(0) + fibo(1)
|_ fibo(3) = fibo(1) + fibo(2)
|_ fibo(2) = fibo(0) + fibo(1)
This can illustrate the benefits/effect of memoization:
def fibo(n,indent="",memo=None):
if n<2: return n
if memo is None: memo = dict()
print(indent[:-3] + "|_ "*bool(indent) + f"fibo({n})",end=" = ")
if n in memo:
print("taken from memo")
else:
print(f"fibo({n-2}) + fibo({n-1})")
memo[n] = fibo(n-2,indent+"| ",memo)+fibo(n-1,indent+" ",memo)
return memo[n]
fibo(7) = fibo(5) + fibo(6)
|_ fibo(5) = fibo(3) + fibo(4)
| |_ fibo(3) = fibo(1) + fibo(2)
| | |_ fibo(2) = fibo(0) + fibo(1)
| |_ fibo(4) = fibo(2) + fibo(3)
| |_ fibo(2) = taken from memo
| |_ fibo(3) = taken from memo
|_ fibo(6) = fibo(4) + fibo(5)
|_ fibo(4) = taken from memo
|_ fibo(5) = taken from memo