First of all you need to know about Binary exponentiation algorithm. The idea is that instead of computing e.g. 5^46
like 5*5*5*5...
46 times, you can do
5^46 == 5^2 * 5^4 * 5^8 * 5^32
The key here, is that you can compute 5^2 fast from 5 (just square it), then 5^4 fast from 5^2 (just square it), then 5^8 from 5^4 (just square it) and so on. To determine which 5^K numbers you should multiply and which not, you can represent the power as a binary number, and multiply to the final result only those components, that correspond to 1 in this binary representation. E.g.
decimal 46 == binary 101110
Thus
5^1 is skipped (corresponds to right most 0), 5^2 is multiplied (corresponds to right most 1), 5^4 is multiplied(second from the right 1), 5^8 is multiplied (third from the right 1), 5^16 is skipped (the left most 0) and 5^32 is multiplied (the left most 1).
Next, you need to compute a very huge power, it's impractically big. But there is a shortcut, since you use modulo operation.
You see, there's a rule that
(a*b % n) == ( (a % n)*(b % n) ) % n
So these should be equivalent
5^46 % n == ( ( ( (5^2 % n) * (5^4 % n) % n) * (5^8 % n) % n) * (5^32 % n) % n)
Notice that each number we multiply won't ever exceed n
, so the overall multiplication chain will not take forever, as n
is big, but not even remotely as gigantic as g**a
In the code, all of that looks like that. It computes instantly
def pow_modulo_n(base, power, n):
result = 1
multiplier = base
while power > 0:
power, binary_digit = divmod(power, 2)
if binary_digit == 1:
result = (result * multiplier) % n
multiplier = (multiplier**2) % n
return result % n
g = 53710316114328094
a = 995443176435632644
n = 926093738455418579
print(pow_modulo_n(g, a, n))
This prints
434839845697636246