I was just testing the code to verify whether the code is running in GPU or not and I got this additional information along with accuracy & loss info.
Executing op __inference_train_function_88100 in device /job:localhost/replica:0/task:0/device:GPU:0
Executing op __inference_train_function_88100 in device /job:localhost/replica:0/task:0/device:GPU:0
81/1875 [>.............................] - ETA: 9s - loss: 1.5444 - accuracy: 0.5918Executing op __inference_train_function_88100 in device /job:localhost/replica:0/task:0/device:GPU:0
Executing op __inference_train_function_88100 in device /job:localhost/replica:0/task:0/device:GPU:0
Executing op __inference_train_function_88100 in device /job:localhost/replica:0/task:0/device:GPU:0
Executing op __inference_train_function_88100 in device /job:localhost/replica:0/task:0/device:GPU:0
The Code is given below (and code is running on jupyter notebook)
import os
tf.autograph.set_verbosity(0)
with tf.device("/gpu:0"):
model = keras.Sequential([
keras.layers.Dense(10, input_shape=(784,), activation='sigmoid')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(X_train_flattened, y_train, epochs=5)
I also referred to TensorFlow documentation but, none of the methods worked. if you have any suggestions then, please help me