Run the code below and see the difference.
1.) OpenMP has an overhead so the runtime has to be more than the overhead to see a benefit.
2.) Don't set the number of threads yourself. In general I use the default threads. However, if your processor has hyper-threading you might get a bit better performance by setting the number of threads equal to the number of cores. With hyper threading the default number of threads will be twice the number of cores. For example on my machine I have four cores and the default number of threads is eight. By setting it to four in some situations I get better results and in other cases I get worse results.
3.) There is some false sharing in c but as long as N
is large enough (which it needs to be to overcome the overhead) the false sharing will not cause much of a problem. You can play with the chunk size but I don't think it will be helpful.
4.) Cache issues. You have at least four levels of memory (the values are for my system): L1 (32Kb), L2(256Kb), L3(12Mb), and main memory (>>12Mb). The benefits of parallelism are going to diminish as you move into higher level. However, in the example below I set N to 100 million floats which is 400 million bytes or about 381Mb and it is still significantly faster using multiple threads. Try adjusting N
and see what happens. For example try setting N
to your cache levels/4 (one float is 4 bytes) (arrays a and b also need to be in the cache so you might need to set N to the cache level/12). However, if N
is too small you fight with the OpenMP overhead (which is what the code in your question does).
#include <stdio.h>
#include <omp.h>
#define N 100000000
int main(int argc, char *argv[]) {
float *a = new float[N];
float *b = new float[N];
float *c = new float[N];
int i;
for (i = 0; i < N; i++) {
a[i] = i * 1.0;
b[i] = i * 2.0;
}
double dtime;
dtime = omp_get_wtime();
for (i = 0; i < N; i++) {
c[i] = a[i] + b[i];
}
dtime = omp_get_wtime() - dtime;
printf ("time %f, %f\n", dtime, c[10]);
dtime = omp_get_wtime();
#pragma omp parallel for private(i)
for (i = 0; i < N; i++) {
c[i] = a[i] + b[i];
}
dtime = omp_get_wtime() - dtime;
printf ("time %f, %f\n", dtime, c[10]);
return 0;
}