There is a set of some structures. I'm trying to prove that the cardinality of the set equals some number. Full theory is too long to post here. So here is a simplified one just to show the idea.
Let the objects (which I need to count) are sets containing natural numbers from 1 to n. The idea of the proof is as follows. I define a function which transforms sets to lists of 0 and 1. Here is the function and its inverse:
fun set_to_bitmap :: "nat set ⇒ nat ⇒ nat ⇒ nat list" where
"set_to_bitmap xs x 0 = []"
| "set_to_bitmap xs x (Suc n) =
(if x ∈ xs then Suc 0 else 0) # set_to_bitmap xs (Suc x) n"
fun bitmap_to_set :: "nat list ⇒ nat ⇒ nat set" where
"bitmap_to_set [] n = {}"
| "bitmap_to_set (x#xs) n =
(if x = Suc 0 then {n} else {}) ∪ bitmap_to_set xs (Suc n)"
value "set_to_bitmap {1,3,7,8} 1 8"
value "bitmap_to_set (set_to_bitmap {1,3,7,8} 1 8) 1"
Then I plan to prove that 1) a number of 0/1 lists with length n equals 2^^n
,
2) the functions are bijections,
3) so the cardinality of the original set is 2^^n
too.
Here are some auxiliary definitions and lemmas, which seems useful:
definition "valid_set xs n ≡ (∀a. a ∈ xs ⟶ 0 < a ∧ a ≤ n)"
definition "valid_bitmap ps n ≡ length ps = n ∧ set ps ⊆ {0, Suc 0}"
lemma length_set_to_bitmap:
"valid_set xs n ⟹
x = Suc 0 ⟹
length (set_to_bitmap xs x n) = n"
apply (induct xs x n rule: set_to_bitmap.induct)
apply simp
sorry
lemma bitmap_members:
"valid_set xs n ⟹
x = Suc 0 ⟹
set_to_bitmap xs x n = ps ⟹
set ps ⊆ {0, Suc 0}"
apply (induct xs x n arbitrary: ps rule: set_to_bitmap.induct)
apply simp
sorry
lemma valid_set_to_valid_bitmap:
"valid_set xs n ⟹
x = Suc 0 ⟹
set_to_bitmap xs x n = ps ⟹
valid_bitmap ps n"
unfolding valid_bitmap_def
using bitmap_members length_set_to_bitmap by auto
lemma valid_bitmap_to_valid_set:
"valid_bitmap ps n ⟹
x = Suc 0 ⟹
bitmap_to_set ps x = xs ⟹
valid_set xs n"
sorry
lemma set_to_bitmap_inj:
"valid_set xs n ⟹
valid_set xy n ⟹
x = Suc 0 ⟹
set_to_bitmap xs x n = ps ⟹
set_to_bitmap ys x n = qs ⟹
ps = qs ⟹
xs = ys"
sorry
lemma set_to_bitmap_surj:
"valid_bitmap ps n ⟹
x = Suc 0 ⟹
∃xs. set_to_bitmap xs x n = ps"
sorry
lemma bitmap_to_set_to_bitmap_id:
"valid_set xs n ⟹
x = Suc 0 ⟹
bitmap_to_set (set_to_bitmap xs x n) x = xs"
sorry
lemma set_to_bitmap_to_set_id:
"valid_bitmap ps n ⟹
x = Suc 0 ⟹
set_to_bitmap (bitmap_to_set ps x) x n = ps"
sorry
Here is a final lemma:
lemma valid_set_size:
"card {xs. valid_set xs n} = 2 ^^ n"
Does this approach seem valid? Are there any examples of such a proof? Could you suggest an idea on how to prove the lemmas? I'm stuck because the induction with set_to_bitmap.induct
seems to be not applicable here.