0

in my lm-regression and the regression table the output is not a single variable for the respective column, even though the input seems to be correct.

Do you have any ideas, why are makes multiple variables in the regression table out of one column?

thank you so much

enter image description here

Code used:


for (i in c(1:116))
{
  id <- (Ad1_users[i])
  x <- c(1:length(as.numeric(Ad1_users_35sec[Ad1_users_35sec$Users == Ad1_users[[i]], 10])))
  y <- as.numeric(Ad1_users_35sec[Ad1_users_35sec$Users == Ad1_users[[i]], 10])
  res<-testmax(1,0.4)
  ###if length over 4, use NA
  number_of_peaks<-length(res)
  if(length(res)>4){
    peaks<-c(rep(NA,4))
  }else{
    diff_length<-4-length(res)
    ###bind NA to produce same length
    peaks<-c(res,rep(NA,diff_length))
  }
  result <- c(peaks, id,number_of_peaks)
  Results_aropos1[[i]] <- result 
}


Results_aropos1<-t(matrix(unlist(Results_aropos1), nrow=6))
Results_aropos1<-data.frame(Results_aropos1)
colnames(Results_aropos1)[c(1:6)]<-c('peak1aropos1','peak2aropos1','peak3aropos1','peak4aropos1','user','number_of_peaksaropos1')

reg_Attitudetowardsthebrandmodel6_1peak1 = lm(brandappeal1 ~ positioning10 + Enjoyment1 + Appreciation1 + credibility1 + comprehensability1 + number_of_peaksaropos1, na.action = na.omit, data = totaldf1moodpeaks)
regressiontableAttitudetowardsthebrandmodel6_1peak1 <- str_squish(stargazer(reg_Attitudetowardsthebrandmodel6_1peak1, type = "text", align = TRUE, no.space = TRUE))
regressiontableAttitudetowardsthebrandmodel6_1peak1gl <- glance(reg_Attitudetowardsthebrandmodel6_1peak1)

output:
===================================================
                            Dependent variable:    
                        ---------------------------
                               brandappeal1        
---------------------------------------------------
positioning10                      0.074           
                                  (0.099)          
Enjoyment1                       0.351***          
                                  (0.082)          
Appreciation1                    0.213***          
                                  (0.077)          
credibility1                       0.098           
                                  (0.065)          
comprehensability1                 0.029           
                                  (0.051)          
number_of_peaksaropos11           -0.017           
                                  (0.175)          
number_of_peaksaropos12           -0.073           
                                  (0.186)          
number_of_peaksaropos13           -0.242           
                                  (0.388)          
Constant                          0.739**          
                                  (0.348)          
---------------------------------------------------
Observations                        114            
R2                                 0.550           
Adjusted R2                        0.516           
Residual Std. Error          0.483 (df = 105)      
F Statistic               16.068*** (df = 8; 105)  
===================================================
Note:                   *p<0.1; **p<0.05; ***p<0.01

0 Answers0