I am new to Haskell and I want to extract the maximum element from a given List
so that I end up with the maximum element x
and the remaining list xs
(not containing x). It can be assumed that the elements of the list are unique.
The type of function I want to implement is somewhat like this:
maxElement :: (Ord b) => (a -> b) -> [a] -> (a, [a])
Notably, the first argument is a function that turns an element into a comparable form. Also, this function is non-total as it would fail given an empty List
.
My current approach fails to keep the elements in the remainder list in place, meaning given [5, 2, 4, 6]
it returns (6, [2, 4, 5])
instead of (6, [5, 2, 4])
. Furthermore, it feels like there should be a nicer looking solution.
compareElement :: (Ord b) => (a -> b) -> a -> (b, (a, [a])) -> (b, (a, [a]))
compareElement p x (s, (t, ts))
| s' > s = (s', (x, t:ts))
| otherwise = (s, (t, x:ts))
where s' = p x
maxElement :: (Ord b) => (a -> b) -> [a] -> (a, [a])
maxElement p (t:ts) = snd . foldr (compareElement p) (p t, (t, [])) $ ts
UPDATE
Thanks to the help of the answer of @Ismor and the comment @chi I've updated my implementation and I feel happy with the result.
maxElement :: (Ord b) => (a -> b) -> [a] -> Maybe (b, a, [a], [a])
maxElement p =
let
f x Nothing = Just (p x, x, [], [x])
f x (Just (s, m, xs, ys))
| s' > s = Just (s', x, ys, x:ys)
| otherwise = Just (s, m, x:xs, x:ys)
where s' = p x
in
foldr f Nothing
The result is either Nothing
when the given list is empty or Maybe (_, x, xs, _)
. I could write another "wrapper" function with the originally intended type and call maxElement
under the hood, but I believe this also ok.