I input a DBF file into a dataframe and run query.
this are the codes.
from dbf import Table
import pandasql as ps
dfPath1 = Table('filename.dbf')
dfPath1.open()
df1 = pd.DataFrame(dfPath1, columns=['column1', 'column2', 'column3', 'column4'])
hour1 = ps.sqldf("Select df1.date, df1.session_no AS 'session_number', SUM(df1.received) AS 'sales_for_12am', SUM(df1.taxes)+SUM(df1.auto_grat)+SUM(df1.discount) AS 'gross_vat_sales', SUM(df1.taxes) AS 'total_vat', SUM(df1.discount) AS 'discount', SUM(df1.auto_grat) AS 'service_charge' From df1 Where open_time >= '00:00:00' And open_time < '00:59:59' And date= '" + str + "'")
with pd.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', None):
hourly1 = hour1.fillna(0)
print(hourly1)
hour2 = ps.sqldf("Select df1.date, df1.session_no AS 'session_number', SUM(df1.received) AS 'sales_for_1am', SUM(df1.taxes)+SUM(df1.auto_grat)+SUM(df1.discount) AS 'gross_vat_sales', SUM(df1.taxes) AS 'total_vat', SUM(df1.discount) AS 'discount', SUM(df1.auto_grat) AS 'service_charge' From df1 Where open_time >= '01:00:00' And open_time < '01:59:59' And date= '" + str + "'")
with pd.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', None):
hourly2 = hour2.fillna(0)
print(hourly2)
hour3 = ps.sqldf("Select df1.date, df1.session_no AS 'session_number', SUM(df1.received) AS 'sales_for_2am', SUM(df1.taxes)+SUM(df1.auto_grat)+SUM(df1.discount) AS 'gross_vat_sales', SUM(df1.taxes) AS 'total_vat', SUM(df1.discount) AS 'discount', SUM(df1.auto_grat) AS 'service_charge' From df1 Where open_time >= '02:00:00' And open_time < '02:59:59' And date= '" + str + "'")
with pd.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', None):
hourly3 = hour3.fillna(0)
print(hourly3)
hour4 = ps.sqldf("Select df1.date, df1.session_no AS 'session_number', SUM(df1.received) AS 'sales_for_3am', SUM(df1.taxes)+SUM(df1.auto_grat)+SUM(df1.discount) AS 'gross_vat_sales', SUM(df1.taxes) AS 'total_vat', SUM(df1.discount) AS 'discount', SUM(df1.auto_grat) AS 'service_charge' From df1 Where open_time >= '03:00:00' And open_time < '03:59:59' And date= '" + str + "'")
with pd.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', None):
hourly4 = hour4.fillna(0)
print(hourly4)
hour5 = ps.sqldf("Select df1.date, df1.session_no AS 'session_number', SUM(df1.received) AS 'sales_for_4am', SUM(df1.taxes)+SUM(df1.auto_grat)+SUM(df1.discount) AS 'gross_vat_sales', SUM(df1.taxes) AS 'total_vat', SUM(df1.discount) AS 'discount', SUM(df1.auto_grat) AS 'service_charge' From df1 Where open_time >= '04:00:00' And open_time < '04:59:59' And date= '" + str + "'")
with pd.option_context('display.max_rows', None, 'display.max_columns', None, 'display.width', None):
hourly5 = hour5.fillna(0)
print(hourly5)
data = [name,hour1.iloc[:,0],hour1.iloc[:,1],hour1.iloc[:,2],hour1.iloc[:,3],hour1.iloc[:,4],hour1.iloc[:,5],hour1.iloc[:,6]]
data2 = [name,hour2.iloc[:,0],hour2.iloc[:,1],hour2.iloc[:,2],hour2.iloc[:,3],hour2.iloc[:,4],hour2.iloc[:,5],hour2.iloc[:,6]]
data3 = [name,hour3.iloc[:,0],hour3.iloc[:,1],hour3.iloc[:,2],hour3.iloc[:,3],hour3.iloc[:,4],hour3.iloc[:,5],hour3.iloc[:,6]]
data4 = [name,hour4.iloc[:,0],hour4.iloc[:,1],hour4.iloc[:,2],hour4.iloc[:,3],hour4.iloc[:,4],hour4.iloc[:,5],hour4.iloc[:,6]]
data5 = [name,hour5.iloc[:,0],hour5.iloc[:,1],hour5.iloc[:,2],hour5.iloc[:,3],hour5.iloc[:,4],hour5.iloc[:,5],hour5.iloc[:,6]]
hour1['name'] = name
hour1.to_csv('sample_output.txt', index=False, sep=' ')
and then get an error like this.. KeyError: None of [Int64Index([0], dtype='int64')] are in the [columns]
this is the output of the text file that i want.. "2020-01-01 943 527.0 56.46 56.46 0.0 0.0"