I'm pretty new to Image Processing and found out that the FFT convolution speeds up the convolution with large kernel sizes a lot.
My question is, how can I apply a kernel to a image in frequency space when using kissFFT?
I already did the following:
//I have an image with RGB pixels and given width/height
const int dim[2] = {height, width}; // dimensions of fft
const int dimcount = 2; // number of dimensions. here 2
kiss_fftnd_cfg stf = kiss_fftnd_alloc(dim, dimcount, 0, 0, 0); // forward 2d
kiss_fftnd_cfg sti = kiss_fftnd_alloc(dim, dimcount, 1, 0, 0); // inverse 2d
kiss_fft_cpx *a = new kiss_fft_cpx[width * height];
kiss_fft_cpx *r = new kiss_fft_cpx[width * height];
kiss_fft_cpx *g = new kiss_fft_cpx[width * height];
kiss_fft_cpx *b = new kiss_fft_cpx[width * height];
kiss_fft_cpx *mask = new kiss_fft_cpx[width * height];
kiss_fft_cpx *outa = new kiss_fft_cpx[width * height];
kiss_fft_cpx *outr = new kiss_fft_cpx[width * height];
kiss_fft_cpx *outg = new kiss_fft_cpx[width * height];
kiss_fft_cpx *outb = new kiss_fft_cpx[width * height];
kiss_fft_cpx *outmask = new kiss_fft_cpx[width * height];
for(unsigned int i=0; i<height; i++) {
for(unsigned int l=0; l<width; l++) {
float red = intToFloat((int)Input(i,l)->Red);
float green = intToFloat((int)Input(i,l)->Green);
float blue = intToFloat((int)Input(i,l)->Blue);
int index = i * height + l;
a[index].r = 1.0;
r[index].r = red;
g[index].r = green;
b[index].r = blue;
}
}
kiss_fftnd(stf, a, outa);
kiss_fftnd(stf, r, outr);
kiss_fftnd(stf, g, outg);
kiss_fftnd(stf, b, outb);
kiss_fftnd(stf, mask, outmask);
kiss_fftnd(sti, outa, a);
kiss_fftnd(sti, outr, r);
kiss_fftnd(sti, outg, g);
When I set the rgb values again on an image I do get the original image back. So the transformation works. What should I do now if I want to apply a kernel, for example a 9x9 box blur (1/9, 1/9, ... 1/9).
I have read some things about Fast convolution, but they're all different, depending on the implementation of the FFT . Is there a kind of "list" what things I have to care before applying a filter ?
The way I think:
The imagesize must be a power of 2; I must create a kernel, the same size as the image. Put the 9 middle values to 1/9, the rest to 0 and then transform this kernel into frequency domain, multiply the source image with it, then transform the source image back. But that doesn't really work :DD