Somewhere along my workflow NaN
values in a Pandas DataFrame (filled in using np.Nan
) have turned into <NA>
values. (I am still trying to figure out how this happened. Reimporting the dataset from a CSV might be responsible?) pandas.DataFrame.dropna
works fine. However pandas.DataFrame.isna
only maps
NA values, such as None or numpy.NaN [...] Everything else gets mapped to False values.
Is there a way to map NA values of the type pandas._libs.missing.NAType
?
fictitious sample
In [1]: import numpy as np
import pandas as pd
dictionary = {'environment': ['test', 'prod', 'test', 'prod'],
'event': ['add_rd', 'add_rd', 'add_env', 'add_env'],
'entry': ['yes', np.NaN, 'no', np.NaN]
}
df = pd.DataFrame(dictionary, columns= ['environment', 'event', 'entry'])
(something happes that turns NaN
values into <NA>
values of the type pandas._libs.missing.NAType
)
In [3]: print(df)
environment event entry
0 test add_rd yes
1 prod add_rd <NA>
2 test add_env no
3 prod add_env <NA>
Expected output:
In [4]: df["entry"].isna()
Out[4] 0 False
1 True
2 False
3 True
Name: entry, dtype: bool