I have an image mask stored as a 2D numpy array where the values indicate the presence of objects that have been segmented in the image (0 = no object, 1..n = object 1 through n). I want to get a single coordinate for each object representing the center of the object. It doesn't have to be a perfectly accurate centroid or center of gravity. I'm just taking the mean of the x and y indices of all cells in the array that contain each object. I'm wondering if there's a faster way to do this than my current method:
for obj in np.unique(mask):
if obj == 0:
continue
x, y = np.mean(np.where(mask == obj), axis=1)
Here is a reproducible example:
import numpy as np
mask = np.array([
[0,0,0,0,0,2,0,0,0,0],
[0,1,1,0,2,2,2,0,0,0],
[0,0,1,0,2,2,2,0,0,0],
[0,0,0,0,0,0,0,0,0,0],
[0,3,3,3,0,0,4,0,0,0],
[0,0,0,0,0,4,4,4,0,0],
[0,0,0,0,0,0,4,0,0,0],
])
points = []
for obj in np.unique(mask):
if obj == 0:
continue
points.append(np.mean(np.where(mask == obj), axis=1))
print(points)
This outputs:
[array([1.33333333, 1.66666667]),
array([1.28571429, 5. ]),
array([4., 2.]),
array([5., 6.])]