Purpose
I want to predict daily volatility by EGARCH(1,1) model using arch
package.
Interval of Prediction: 01-04-2015
to 12-06-2018
(mm-dd-yyyy format)
hence i should grab data (for example) from 2013
till 2015
to fit EGARCH(1,1) model on it, and then predict daily volatility for 01-04-2015
to 12-06-2018
Code
so i tried to write it like this:
# Packages That we need
from pandas_datareader import data as web
from arch import arch_model
import pandas as pd
#---------------------------------------
# grab Microsoft daily adjusted close price data from '01-03-2013' to '12-06-2018' and store it in DataFrame
df = pd.DataFrame(web.get_data_yahoo('MSFT' , start='01-03-2013' , end='12-06-2018')['Adj Close'])
#---------------------------------------
# calculate daily rate of return that is necessary for predicting daily Volatility by EGARCH
daily_rate_of_return_EGARCH = np.log(df.loc[ : '01-04-2015']/df.loc[ : '01-04-2015'].shift())
# drop NaN values
daily_rate_of_return_EGARCH = daily_rate_of_return_EGARCH.dropna()
#---------------------------------------
# Volatility Forecasting By EGARCH(1,1)
model_EGARCH = arch_model(daily_rate_of_return_EGARCH, vol='EGARCH' , p = 1 , o = 0 , q = 1)
fitted_EGARCH = model_EGARCH.fit(disp='off')
#---------------------------------------
# and finally, Forecasting step
# Note that as mentioned in `purpose` section, predict interval should be from '01-04-2015' to end of the data frame
horizon = len(df.loc['01-04-2015' : ])
volatility_FORECASTED = fitted_EGARCH.forecast(horizon = horizon , method='simulation')
Error
and then i got this error:
MemoryError Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_12900/1021856026.py in <module>
1 horizon = len(df.loc['01-04-2015':])
----> 2 volatility_FORECASTED = fitted_EGARCH.forecast(horizon = horizon , method='simulation')
MemoryError: Unable to allocate 3.71 GiB for an array with shape (503, 1000, 989) and data type float64
seems arch is going to save huge amount of data.
Expected Result
what i expect, is a simple pandas.Series
that contains daily volatility predictions from '01-04-2015'
until '12-06-2018'
. precisely i mean smth like this:
(Note: date format --> mm-dd-yyyy)
(DATE) (VOLATILITY)
'01-04-2015' .....
'01-05-2015' .....
'01-06-2015' .....
. .
. .
. .
'12-06-2018' .....
How can i achieve this?