I can transform the target column to desired ordered numerical value using categorical encoding and ordinal encoding. But I am unable to perform inverse_transform
as an error is showing which is written below.
import pandas as pd
import category_encoders as ce
from sklearn.preprocessing import OrdinalEncoder
lst = [ 'BRANCHING/ELONGATION', 'EARLY', 'EARLY', 'EARLY', 'EARLY', 'MID', 'MID', 'ADVANCED/TILLERING',
'FLOWERING', 'FLOWERING', 'FLOWERING', 'SEEDLING/EMERGED']
filtered_df = pd.DataFrame(lst, columns =['growth_state'])
filtered_df['growth_state'].value_counts()
EARLY 4
FLOWERING 3
MID 2
ADVANCED/TILLERING 1
SEEDLING/EMERGED 1
BRANCHING/ELONGATION 1
Name: growth_state, dtype: int64
dictionary = [{'col': 'growth_state',
'mapping':{'SEEDLING/EMERGED':0, 'EARLY':1, 'MID':2,
'ADVANCED/TILLERING':3, 'BRANCHING/ELONGATION':4, 'FLOWERING':5 }}]
# instiating encoder
encoder = ce.OrdinalEncoder(cols = 'growth_state', mapping= dictionary)
filtered_df['growth_state'] = encoder.fit_transform(filtered_df['growth_state'])
filtered_df
growth_state
0 4
1 1
2 1
3 1
4 1
5 2
6 2
7 3
8 5
9 5
10 5
11 0
But when I perform inverse_transform:
newCol = encoder.inverse_transform(filtered_df['growth_state'])
AttributeError Traceback (most recent call last)
<ipython-input-26-b6505b4be1e1> in <module>
----> 1 newCol = encoder.inverse_transform(filtered_df['growth_state'])
d:\users\tiwariam\appdata\local\programs\python\python36\lib\site-packages\category_encoders\ordinal.py in inverse_transform(self, X_in)
266 for switch in self.mapping:
267 column_mapping = switch.get('mapping')
--> 268 inverse = pd.Series(data=column_mapping.index, index=column_mapping.values)
269 X[switch.get('col')] = X[switch.get('col')].map(inverse).astype(switch.get('data_type'))
270
AttributeError: 'dict' object has no attribute 'index'
Note: the above column is a target column, I could have applied a label encoder as this is a classification-related problem. But I have adopted the above combination of categorical and ordinal encoding as variables are ordered in nature.