import pandas as pd
import numpy as np
data_A=pd.read_csv('D:/data_A.csv')
data_A
has a column named time
.
dtype of time
is int64. But after I run the code below, time
has changed to float type.
data_A.loc[data_A['scan'] == 1., data_A.columns.difference(
['scan', 'label', 'level','index'])] = np.nan
data_A.loc[data_A['NH4'] < 0., 'NH4'] = np.nan
data_A.loc[data_A['NH4'] > 10., 'NH4'] = np.nan
data_A.loc[data_A['NH4_Y']<0, 'NH4_Y'] = np.nan
data_A.loc[data_A['NH4_Y']>100, 'NH4_Y'] = np.nan
data_A.loc[data_A['TOC_Y']<0, 'TOC_Y'] = np.nan
data_A.loc[data_A['TOC_Y']>20000, 'TOC_Y'] = np.nan
data_A.loc[data_A['SS_Y']<0, 'SS_Y'] = np.nan
data_A.loc[data_A['SS_Y']>20000, 'SS_Y'] = np.nan
data_A.loc[data_A['TEMP_Y']<0, 'TEMP_Y'] = np.nan
data_A.level.astype(int)
data_A['NH4'].interpolate(method='slinear', inplace = True)
I didn't do anything to the column time
,but it changed to float type.
I want int type for
time
.Is there any way to make it as int type?