I'm looking for U-net implementation for landmark detection task, where the architecture is intended to be similar to the figure above. For reference please see this: An Attention-Guided Deep Regression Model for Landmark Detection in Cephalograms
From the figure, we can see the input dimension is 572x572 but the output dimension is 388x388. My question is, how do we visualize and correctly understand the cropped output? From what I know, we ideally expect the output size is the same as input size (which is 572x572) so we can apply the mask to the original image to carry out segmentation. However, from some tutorial like (this one), the author recreate the model from scratch then use "same padding" to overcome my question, but I would prefer not to use same padding to achieve same output size.
I couldn't use same padding because I choose to use pretrained ResNet34 as my encoder backbone, from PyTorch pretrained ResNet34 implementation they didn't use same padding on the encoder part, which means the result is exactly similar as what you see in the figure above (intermediate feature maps are cropped before being copied). If I would to continue building the decoder this way, the output will have smaller size compared to input image.
The question being, if I want to use the output segmentation maps, should I pad its outside until its dimension match the input, or I just resize the map? I'm worrying the first one will lost information about the boundary of image and also the latter will dilate the landmarks predictions. Is there a best practice about this?
The reason I must use a pretrained network is because my dataset is small (only 100 images), so I want to make sure the encoder can generate good enough feature maps from the experiences gained from ImageNet.