I have a sample of more than 50 million observations. I estimate the following model in R:
model1 <- feglm(rejection~ variable1+ variable1^2 + variable2+ variable3+ variable4 | city_fixed_effects + year_fixed_effects, family=binomial(link="logit"), data=database)
Based on the estimates from model1, I calculate the marginal effects:
mfx2 <- marginaleffects(model1)
summary(mfx2)
This line of code also calculates the marginal effects of each fixed effects which slows down R. I only need to calculate the average marginal effects of variables 1, 2, and 3. If I separately, calculate the marginal effects by using mfx2 <- marginaleffects(model1, variables = "variable1") then it does not show the standard error and the p-value of the average marginal effects.
Any solution for this issue?