I would like to run a bootstrap of a weighted mean in a for loop (I don’t think I can use ‘apply’ because it concerns a weighted mean). I would only need to store the resulting standard errors in a dataframe. Another post provided the code for how to calculate the weighted mean in a bootstrap (bootstrap weighted mean in R), and works perfectly:
library(boot)
mtcarsdata = mtcars #dataframe for data
mtcarsweights = rev(mtcars) #dataframe for weights
samplewmean <- function(d, i, j) {
d <- d[i, ]
w <- j[i, ]
return(weighted.mean(d, w))
}
results_qsec <- sd(boot(data= mtcarsdata[, 6, drop = FALSE],
statistic = samplewmean,
R=10000,
j = mtcarsweights[, 6 , drop = FALSE])[[2]], na.rm=T)
results_qsec
To then run it in a loop, I tried:
outputboot = matrix(NA, nrow=11, ncol=1)
for (k in 1:11){
outputboot[1,k] = sd(boot(data= mtcarsdata[, k, drop = FALSE],
statistic = samplewmean,
R=10000,
j = mtcarsweights[, k, drop = FALSE])[[2]], na.rm=T)
}
outputboot
But this doesn't work. The first output isn’t even correct. I suspect the code can’t work with two iterators: one for looping over the columns and the other for the sampling with replacement.
I hope anyone could offer some help.