that's my data. (dput)
mydata=structure(list(ndvi_num75up = c(33L, 33L, 100L, 48L, 36L, 36L,
37L, 36L, 27L, 35L, 52L, 82L, 41L, 40L, 45L, 45L, 31L, 31L, 33L,
33L, 50L, 45L, 38L, 29L, 56L), ndvi_num75down = c(102L, 102L,
108L, 117L, 107L, 106L, 107L, 106L, 94L, 93L, 111L, 113L, 108L,
107L, 108L, 108L, 125L, 125L, 114L, 114L, 110L, 110L, 103L, 99L,
104L), ndvi_num85up = c(57L, 57L, 56L, 72L, 45L, 44L, 51L, 44L,
45L, 41L, 59L, 87L, 46L, 45L, 59L, 59L, 96L, 96L, 53L, 53L, 54L,
102L, 45L, 51L, 61L), ndvi_num85down = c(95L, 95L, 92L, 114L,
103L, 103L, 104L, 103L, 89L, 89L, 106L, 111L, 105L, 96L, 103L,
103L, 114L, 114L, 112L, 112L, 95L, 104L, 93L, 94L, 99L), ndvi_n_maxvi = c(73L,
73L, 104L, 90L, 74L, 73L, 76L, 73L, 63L, 65L, 83L, 98L, 75L,
72L, 80L, 80L, 88L, 88L, 81L, 81L, 77L, 75L, 69L, 68L, 80L),
ndvi_num50up = c(19L, 19L, 20L, 17L, 0L, 17L, 0L, 17L, 0L,
18L, 24L, 29L, 19L, 25L, 25L, 25L, 0L, 0L, 0L, 0L, 25L, 24L,
16L, 18L, 37L), ndvi_num50down = c(118L, 118L, 119L, 133L,
113L, 112L, 115L, 112L, 110L, 109L, 131L, 120L, 114L, 112L,
117L, 117L, 0L, 0L, 122L, 122L, 116L, 116L, 110L, 109L, 116L
), ndvi_num35up = c(0L, 0L, 12L, 0L, 0L, 0L, 0L, 0L, 0L,
0L, 0L, 0L, 1L, 15L, 18L, 18L, 0L, 0L, 0L, 0L, 0L, 5L, 8L,
0L, 19L), ndvi_num35down = c(131L, 131L, 129L, 0L, 119L,
117L, 124L, 117L, 117L, 113L, 0L, 0L, 121L, 116L, 123L, 123L,
0L, 0L, 0L, 0L, 125L, 123L, 115L, 129L, 124L), ndvi_max = c(0.499,
0.499, 0.56, 0.437, 0.834, 0.845, 0.785, 0.845, 0.705, 0.819,
0.592, 0.671, 0.674, 0.853, 0.792, 0.792, 0.47, 0.47, 0.578,
0.578, 0.715, 0.758, 0.686, 0.638, 0.836)), row.names = c(NA,
25L), class = "data.frame")
I have 10 vars for clustering
'data.frame': 4926 obs. of 10 variables:
$ ndvi_num75up : int 33 33 100 48 36 36 37 36 27 35 ...
$ ndvi_num75down: int 102 102 108 117 107 106 107 106 94 93 ...
$ ndvi_num85up : int 57 57 56 72 45 44 51 44 45 41 ...
$ ndvi_num85down: int 95 95 92 114 103 103 104 103 89 89 ...
$ ndvi_n_maxvi : int 73 73 104 90 74 73 76 73 63 65 ...
$ ndvi_num50up : int 19 19 20 17 0 17 0 17 0 18 ...
$ ndvi_num50down: int 118 118 119 133 113 112 115 112 110 109 ...
$ ndvi_num35up : int 0 0 12 0 0 0 0 0 0 0 ...
$ ndvi_num35down: int 131 131 129 0 119 117 124 117 117 113 ...
$ ndvi_max : num 0.499 0.499 0.56 0.437 0.834 0.845 0.785 0.845 0.705 0.819 .
.
But when i perform DBSCA
library(dbscan)
dbscan_res <- dbscan(mydata, eps = 0.15, minPts = 5)
str(dbscan_res)
and as result that
The clustering contains 0 cluster(s) and 4926 noise points.
0
4926
How perform dbscan clustering for all 10 variables with indication of the observation belonging to the cluster and why it didn't find clusters?
I mean the desired output
ndvi_num75up ndvi_num75down ndvi_num85up ndvi_num85down ndvi_n_maxvi ndvi_num50up ndvi_num50down ndvi_num35up ndvi_num35down ndvi_max cluster
33 102 57 95 73 19 118 0 131 0,499 3
33 102 57 95 73 19 118 0 131 0,499 3
100 108 56 92 104 20 119 12 129 0,56 2
48 117 72 114 90 17 133 0 0 0,437 4
36 107 45 103 74 0 113 0 119 0,834 3
36 106 44 103 73 17 112 0 117 0,845 3
37 107 51 104 76 0 115 0 124 0,785 3
36 106 44 103 73 17 112 0 117 0,845 3
27 94 45 89 63 0 110 0 117 0,705 1
35 93 41 89 65 18 109 0 113 0,819 1
(this result using k-mean, but i need dbscan ,cause it self choose needed count of clusters) Thank you.