I am working on a model trained on the MNIST dataset. I am using the torch.optim.adam model and have been experimenting with tuning the hyper parameters. After running a lot of tests, I have come to find a combination of hyper parameters that give 90% accuracy. However, I feel like maybe since I am new to this, there might be a more efficient way to find the optimal values of the hyperparameters. The brute force approach seems to depend on trial and error & I was wondering if there is certain strategy to find these values. Example of the code being used is:
if __name__ == '__main__':
end = time.time()
model_ft = Net().to(device)
print(model_ft.network)
criterion = nn.CrossEntropyLoss()
optimizer_ft = optim.Adam(model_ft.parameters(), lr=1e-3)
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=9, gamma=0.5)
history, accuracy = train_test(model_ft, criterion, optimizer_ft, exp_lr_scheduler,
num_epochs=15)
Here I would like to find the optimal values of:-
- Learning Rate
- Step Size
- Gamma
- Number of Epochs
Any help is much appreciated!