I'm using the glca package to run a latent class analysis. I want to see how covariates (other than indicators used to construct latent classes) affect the probability of class assignment. I understand this is a multinomial logistic regression, and thus, my question is, is there a way I can change the base reference latent class? For example, my model is currently a 4-class model, and the output shows the effect of covariates on class prevalence with respect to Class-4 (base category) as default. I want to change this base category to, for example, Class-2.
My code is as follows
fc <- item(intrst, respect, expert, inclu, contbt,secure,pay,bonus, benft, innov, learn, rspons, promote, wlb, flex) ~ atenure+super+sal+minority+female+age40+edu+d_bpw+d_skill
lca4_cov <- glca(fc, data = bpw, nclass = 4, seed = 1)
and I get the following output.
> coef(lca4_cov)
Class 1 / 4 :
Odds Ratio Coefficient Std. Error t value Pr(>|t|)
(Intercept) 1.507537 0.410477 0.356744 1.151 0.24991
atenure 0.790824 -0.234679 0.102322 -2.294 0.02183 *
super 1.191961 0.175600 0.028377 6.188 6.29e-10 ***
sal 0.937025 -0.065045 0.035490 -1.833 0.06686 .
minority 2.002172 0.694233 0.060412 11.492 < 2e-16 ***
female 1.210653 0.191160 0.059345 3.221 0.00128 **
age40 1.443603 0.367142 0.081002 4.533 5.89e-06 ***
edu 1.069771 0.067444 0.042374 1.592 0.11149
d_bpw 0.981104 -0.019077 0.004169 -4.576 4.78e-06 ***
d_skill 1.172218 0.158898 0.036155 4.395 1.12e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Class 2 / 4 :
Odds Ratio Coefficient Std. Error t value Pr(>|t|)
(Intercept) 3.25282 1.17952 0.43949 2.684 0.00729 **
atenure 0.95131 -0.04992 0.12921 -0.386 0.69926
super 1.16835 0.15559 0.03381 4.602 4.22e-06 ***
sal 1.01261 0.01253 0.04373 0.287 0.77450
minority 0.72989 -0.31487 0.08012 -3.930 8.55e-05 ***
female 0.45397 -0.78971 0.07759 -10.178 < 2e-16 ***
age40 1.26221 0.23287 0.09979 2.333 0.01964 *
edu 1.29594 0.25924 0.05400 4.801 1.60e-06 ***
d_bpw 0.97317 -0.02720 0.00507 -5.365 8.26e-08 ***
d_skill 1.16223 0.15034 0.04514 3.330 0.00087 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Class 3 / 4 :
Odds Ratio Coefficient Std. Error t value Pr(>|t|)
(Intercept) 0.218153 -1.522557 0.442060 -3.444 0.000575 ***
atenure 0.625815 -0.468701 0.123004 -3.810 0.000139 ***
super 1.494112 0.401532 0.031909 12.584 < 2e-16 ***
sal 1.360924 0.308164 0.044526 6.921 4.72e-12 ***
minority 0.562590 -0.575205 0.081738 -7.037 2.07e-12 ***
female 0.860490 -0.150253 0.072121 -2.083 0.037242 *
age40 1.307940 0.268453 0.100376 2.674 0.007495 **
edu 1.804949 0.590532 0.054522 10.831 < 2e-16 ***
d_bpw 0.987353 -0.012727 0.004985 -2.553 0.010685 *
d_skill 1.073519 0.070942 0.045275 1.567 0.117163
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
I would appreciate it if anyone let me know codes/references to address my problem. Thanks in advance.