I'm sure there is a simple solution to this, but I have a list of dataframes that I am generating a number of graphs for, using the same variables.
For the titles of the graphs, I would like to include the dataframe name so it helps with organisation. I've attempted to call the list under plt.title() however this hasn't worked. If you have a solution for this it would be greatly appreciated.
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import sklearn
# import normal stats from csv in following order (Normal, Adversarial, Helpful, Neutral, Random)
# map 1
df1 = pd.read_csv('D:/Documents/Data Science/L4D2 Stats - No Mercy CSV files updated version/Normal/L4D2 Stats normal - c8m1 apartment.csv', header=0)
df2 = pd.read_csv('D:/Documents/Data Science/L4D2 Stats - No Mercy CSV files updated version/Adversarial/L4D2 Stats adversarial - c8m1 apartment.csv', header=0)
df3 = pd.read_csv('D:/Documents/Data Science/L4D2 Stats - No Mercy CSV files updated version/Helpful/L4D2 Stats helpful - c8m1 apartment.csv', header=0)
df4 = pd.read_csv('D:/Documents/Data Science/L4D2 Stats - No Mercy CSV files updated version/Neutral/L4D2 Stats neutral - c8m1 apartment.csv', header=0)
df5 = pd.read_csv('D:/Documents/Data Science/L4D2 Stats - No Mercy CSV files updated version/Random/L4D2 stats random - c8m1 apartment.csv', header=0)
#map 2
#df6 = pd.read_csv()
#df7 = pd.read.csv()
#df8 = pd.read.csv()
#df9 = pd.read.csv()
#df10 = pd.read.csv()
#map 3
#df11 = pd.read.csv()
#df12 = pd.read.csv()
#df13 = pd.read.csv()
#df14 = pd.read.csv()
#df15 = pd.read.csv()
#map 4
#df16 = pd.read.csv()
#df17 = pd.read.csv()
#df18 = pd.read.csv()
#df19 = pd.read.csv()
#df20 = pd.read.csv()
df_list = [df1, df2, df3, df4, df5]
# df_list2 = [df6, df7, df8, df9, df10]
# df_list3 = [df11, df12, df13, df14, df15]
# df_list4 = [df16, df17, df18, df19, df20]
for df in df_list:
df = df
df.describe()
df.columns = ['Population', 'Special Spawns', 'Bot 1 Health', 'Bot 2 Health', 'Bot 3 Health', 'Bot 4 Health',
'Incaps', 'Bot 1 Intensity', 'Bot 2 Intensity', 'Bot 3 Intensity', 'Bot 4 Intensity']
df['Special Spawns'] = df['Special Spawns'].fillna(0)
df['Population'] = df['Population'].fillna(0)
df['Bot 1 Health'] = df['Bot 1 Health'].fillna(0)
df['Bot 2 Health'] = df['Bot 2 Health'].fillna(0)
df['Bot 3 Health'] = df['Bot 3 Health'].fillna(0)
df['Bot 4 Health'] = df['Bot 4 Health'].fillna(0)
df['Incaps'] = df['Incaps'].fillna(0)
df['Bot 1 Intensity'] = df['Bot 1 Intensity'].fillna(0)
df['Bot 2 Intensity'] = df['Bot 2 Intensity'].fillna(0)
df['Bot 3 Intensity'] = df['Bot 3 Intensity'].fillna(0)
df['Bot 4 Intensity'] = df['Bot 4 Intensity'].fillna(0)
normalised_df = (df-df.mean())/df.std()
pd.options.display.float_format = '{:,.8f}'.format
normalised_df.corr()
plt.figure(figsize=(12, 8))
sns.heatmap(normalised_df.corr(), annot=True, fmt=".4f")
# input map name
plt.title()
plt.show()