I have spent a few days now finding a bug that freezes my companies application. The dreaded UserPreferenceChanged UI freeze. It's not a complicated bug, but hard to find in a rather big application. There are quite a few articles about how this bug unfolds but not on how to put ones finger on the faulty code. I have put together a solution, in form of a logging mechanism from multiple older tickets and (i hope) improved a bit upon them. May it save some time for the next programmer with this problem.
How to recognize the bug?
The application freezes completely. Nothing more to be done than create a memory dump and then close it via TaskManager. If you open the dmp file in VisualStudio or WinDbg you might see a stack trace like this one
WaitHandle.InternalWaitOne
WaitHandle.WaitOne
Control.WaitForWaitHandle
Control.MarshaledInvoke
Control.Invoke
WindowsFormsSynchronizationContext.Send
System.EventInvokeInfo.Invoke
SystemEvents.RaiseEvent
SystemEvents.OnUserPreferenceChanged
SystemEvents.WindowProc
:
The important two lines here are "OnUserPreferenceChanged" and "WindowsFormsSynchronizationContext.Send"
What's the cause?
SynchronizationContext was introduced with .NET2 to generalize thread synchronization. It gives us methods like "BeginInvoke" and such.
The UserPreferenceChanged event is rather self explanatory. It will be triggered by the user changing his background, logging in or out, changing the Windows accent colors and lots of other actions.
If one creates a GUI control on a background thread a WindowsFormsSynchronizationContext is installed on said thread. Some GUI controls subscribe to the UserPreferenceChanged event when created or when using certain methods. If this event is triggered by the user the main thread sends a message to all subscribers and waits. In the described scenarion: a worker thread without a message loop! The application is frozen.
To find the cause of the freeze can be especially hard because the cause of the bug (creation of GUI element on a background thread) and the error state (application frozen) can be minutes apart. See this really good article for more details and a slightly different scenario. https://www.ikriv.com/dev/dotnet/MysteriousHang
Examples
How can one provoke this error for testing purposes?
Example 1
private void button_Click(object sender, EventArgs e)
{
new Thread(DoStuff).Start();
}
private void DoStuff()
{
using (var r = new RichTextBox())
{
IntPtr p = r.Handle; //do something with the control
}
Thread.Sleep(5000); //simulate some work
}
Not bad but not good either. If the UserPreferenceChanged event gets triggered in the few milliseconds you use the RichTextBox your application will freeze. Could happen, not very likely though.
Example 2
private void button_Click(object sender, EventArgs e)
{
new Thread(DoStuff).Start();
}
private void DoStuff()
{
var r = new RichTextBox();
IntPtr p = r.Handle; //do something with the control
Thread.Sleep(5000); //simulate some work
}
This is bad. The WindowsFormsSynchronizationContext gets not cleaned up because the RichTextBox does not get disposed. If the UserPreferenceChangedEvent occures while the thread lives your application will freeze.
Example 3
private void button_Click(object sender, EventArgs e)
{
Task.Run(() => DoStuff());
}
private void DoStuff()
{
var r = new RichTextBox();
IntPtr p = r.Handle; //do something with the control
}
This is a nightmare. Task.Run(..) will execute the work on a background thread on the threadpool. The WindowsFormsSynchronizationContext gets not cleaned up because the RichTextBox is not disposed. Threadpool threads are not cleaned up. This background thread now lurks in your threadpool just waiting for the UserPreferenceChanged event to freeze your application even long after your task has returned!
Conclusion: Risk is manageable when you know what you do. But whenever possible: avoid GUI Elements in a background thread!
How to deal with this bug?