If you copy the lists to an array, the following could be useful: Since we consider only even-length-palindromes, I assume this case. But the technique can be easily extended to work wich odd-length-palindromes.
We store not the actual length of the palindrome, but half the length, so we know how many characters to the left/right we can go.
Consider the word: aabbabbabab
. We are looking for the longest palindrome.
a a b b a b b a b a b (spaces for readability)
°^° start at this position and look to the left/right as long as possible,
1 we find a palindrome of length 2 (but we store "1")
we now have a mismatch so we move the pointer one step further
a a b b a b b a b a b
^ we see that there's no palindrome at this position,
1 0 so we store "0", and move the pointer
a a b b a b b a b a b
° °^° ° we have a palindrome of length 4,
1 0 2 so we store "2"
naively, we would move the pointer one step to the right,
but we know that the two letters before pointer were *no*
palindrome. This means, the two letters after pointer are
*no* palindrome as well. Thus, we can skip this position
a a b b a b b a b a b
^ we skipped a position, since we know that there is no palindrome
1 0 2 0 0 we find no palindrome at this position, so we set "0" and move on
a a b b a b b a b a b
° ° °^° ° ° finding a palindrome of length 6,
1 0 2 0 0 3 0 0 we store "3" and "mirror" the palindrome-length-table
a a b b a b b a b a b
^ due to the fact that the previous two positions hold "0",
1 0 2 0 0 3 0 0 0 we can skip 2 pointer-positions and update the table
a a b b a b b a b a b
^ now, we are done
1 0 2 0 0 3 0 0 0 0
This means: As soon as we find a palindrome-position, we can infer some parts of the table.
Another example: aaaaaab
a a a a a a b
°^°
1
a a a a a a b
° °^° °
1 2 1 we can fill in the new "1" since we found a palindrome, thus mirroring the
palindrome-length-table
a a A A a a b (capitals are just for emphasis)
^ at this point, we already know that there *must* be a palindrome of length
1 2 1 at least 1, so we don't compare the two marked A's!, but start at the two
lower-case a's
My point is: As soon as we find palindromes, we may be able to mirror (at least a part of) the palindrome-length table and thus infer information about the new characters.
This way, we can save comparisons.