I am trying to use ols_step_both_p
with group_by
function of dplyr
package. I am using the following code
library(tidyverse)
library(olsrr)
#Do linear regression for all the locations
model = df %>%
mutate(Location = factor(Location, levels = unique(Location))) %>%
group_by(Location) %>%
do(mod = lm(y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12, data = .,
na.action=na.omit))
#Do stepwise regression for 1st location
ols_step_both_p(model$mod[[1]], pent = 0.05, prem = 0.1)
It returns me following error
Error in eval(model$call$data) : object '.' not found
How can I solve this error?
Data
df = structure(list(Location = c("Location 1", "Location 1", "Location 1",
"Location 1", "Location 1", "Location 1", "Location 1", "Location 1",
"Location 1", "Location 1", "Location 1", "Location 1", "Location 1",
"Location 1", "Location 1", "Location 1", "Location 1", "Location 1",
"Location 1", "Location 1", "Location 2", "Location 2", "Location 2",
"Location 2", "Location 2", "Location 2", "Location 2", "Location 2",
"Location 2", "Location 2", "Location 2", "Location 2", "Location 2",
"Location 2", "Location 2", "Location 2", "Location 2", "Location 2",
"Location 2", "Location 2"), y = c(1.65954284204268, 1.58123919015159,
2.05973017000125, 2.18912673315495, 2.01224505269543, 1.99259958467057,
2.00078847394452, 1.36897959183673, 1.52340971947847, 0.0261531145981931,
0.154664774742817, 0.790430042398546, 1.28059309309309, 0.974354066985646,
1.20366598778004, 1.39269070394898, 1.40758547008547, 1.61010461852513,
1.62170385395538, 1.62471511775133, 2.38461538461538, 2.42220884742702,
2.41693907875186, 2.81167789541226, 2.74944214217405, 2.21060782036392,
2.55440414507772, 2.96888447533929, 2.63223300970874, 2.91519143680527,
2.7768625982778, 3.56561085972851, 3.11382113821138, 2.9851919008764,
3.31187669990934, 2.82333333333333, 3.63553943789665, 2.26956784527047,
2.92354185554548, NA), x1 = c(0, 0, 271.72, 138.49, 0, 9.78,
59.25, 0, 132.37, 29.14, 127.09, 26.35, 36.34, 22.58, 85.59,
0, 0, 358.06, 0, 0, 3.33, 0, 0, 0, 5.62, 3.33, 3.23, 16.58, 85.6,
72.73, 48.72, 29.21, 16.67, 63.12, 53.33, 40, 89.46, 76.35, 16.66,
47.0397916666667), x2 = c(13.12, 0, 145.91, 131.29, 6.56, 141.93,
174.52, 0, 104.95, 133.98, 182.68, 121.07, 128.49, 87.64, 99.25,
0, 0, 124.63, 0, 3.33, 19.58, 32.58, 51.58, 27.4, 12.68, 29.91,
72.37, 9.34, 22.82, 55.76, 25.9, 11.93, 25.9, 13.33, 29.46, 29.56,
19.68, 46.24, 19.9, 39.13625), x3 = c(223.84, 59.36, 0, 3.33,
81.72, 6.45, 13.01, 196.98, 0, 0, 0, 0, 3.33, 19.89, 3.23, 79.25,
118.17, 3.23, 118.28, 121.5, 87.01, 70.46, 54.29, 70.97, 51.81,
84.69, 66.75, 104.27, 29.21, 52.54, 34.51, 103.44, 139.87, 85.16,
101.93, 82.36, 79.25, 49.14, 91.62, 43.7104166666667), x4 = c(44.04,
31.43, 3.33, 0, 16.35, 0, 9.68, 108.28, 22.8, 9.9, 6.67, 6.67,
0, 10, 0, 19.57, 26.01, 9.9, 32.58, 26.13, 58.46, 12.67, 29.16,
73.39, 65.45, 68.92, 22.93, 107.04, 97.63, 94.2, 132.53, 112.47,
95.03, 127.42, 107.53, 107.96, 71.72, 68.38, 123.87, 47.4670833333333
), x5 = c(34.12, 35.23, 39.8, 31, 33.8, 31.6, 33.96, 34.7, 33.2,
32, 32.3, 32.7, 30.72, 33.44, 31.2, 33.03, 33.73, 32.5, 34.57,
32.83, 33.5, 32.6, 33.3, 33.3, 32.9, 34.9, 32.4, 34.4, 34, 34.3,
33.6, 35.7, 33.4, 34.5, 34.2, 35.2, 33.6, 34.6, 34.5, 32.7333333333333
), x6 = c(25.99, 25.55, 22.2, 25.6, 25.36, 24.8, 25.7, 26.4,
22.3, 23.3, 22.8, 23.1, 25.16, 25.59, 24.82, 25.24, 25.93, 25.11,
25.54, 25.54, 24.5, 24.4, 25.7, 25.7, 26.9, 24.1, 24.4, 24.4,
25.4, 24, 23.5, 24.3, 24.1, 23.9, 25.1, 27.2, 25, 24.4, 24.5,
23.628125), x7 = c(26.26, 26.7, 20.7, 21.1, 25.71, 21.6, 20,
26.48, 22.9, 21.3, 21.2, 21.5, 22.3, 21.6, 21, 27.12, 27.23,
22.6, 27.09, 26.29, 24.2, 25.2, 21.9, 22.6, 25.3, 23.4, 22.6,
25.6, 25, 21.3, 19, 24.7, 21.1, 23.6, 22.7, 20, 20.4, 22.8, 24.2,
24.10625), x8 = c(21.34, 21.95, 12, 16.9, 22.47, 19, 18, 22.86,
15.2, 18.2, 17.2, 14.7, 17.7, 19.2, 16.3, 21.88, 21.55, 14.5,
22.09, 22.1, 16.9, 18.6, 16.9, 19.2, 17.9, 19, 18.6, 17.4, 13.6,
10, 13.3, 13.3, 14.2, 12, 11.9, 11.5, 10, 12.8, 13.7, 16.5791666666667
), x9 = c(5.46, 5.99, 8.2875, 7.2175, 6.18, 5.5925, 6.3025, 6.565,
8.2725, 6.4175, 7.0825, 6.915, 6.89, 6.4475, 7.15, 5.945, 6.165,
10.925, 6.0325, 5.52, 7.7925, 7.5525, 7.4025, 7.985, 8.505, 8.06,
7.3125, 8.775, 9.615, 9.2025, 8.9075, 8.8675, 8.315, 9.1525,
8.965, 8.9225, 9.475, 8.87, 8.6175, 8.30661458333333), x10 = c(0,
0.25, 8.25, 6.25, 0, 10.75, 6, 0, 5.75, 4, 6.75, 4.25, 4.5, 2.5,
5.5, 0, 0.25, 5.5, 0, 0, 7.75, 8.5, 6.75, 8.75, 10, 5.75, 10.25,
9.75, 15, 10.25, 9.5, 10.75, 11.5, 12.25, 13.5, 10, 14.25, 13.25,
11.25, 6.5), x11 = c(66.96, 77.19, 454, 60.5, 40.8, 61.6, 96.5,
48.37, 100.7, 105.8, 48.5, 70.5, 118.2, 79, 56.6, 60.4, 80.1,
119.07, 72.92, 213.39, 65.9, 54.2, 50.6, 98.1, 106.3, 77.8, 39.7,
79.8, 33.2, 71, 49.3, 74, 97, 55.4, 84.8, 116, 51.7, 87.6, 35.2,
51.4166666666667), x12 = c(227.07, 183.81, 570.7, 160.3, 145.07,
136.2, 153.9, 149.17, 333.6, 224.4, 106.5, 138.05, 185.8, 176.64,
227.9, 151.13, 261.67, 273.67, 196.28, 513.67, 156.6, 136.8,
79.5, 200.6, 286.4, 157.6, 86.3, 164.6, 74.2, 120.7, 111.5, 104.5,
189.1, 150, 139.2, 206, 82.2, 140.5, 137.6, 101.529166666667)), row.names = c(NA,
40L), class = "data.frame")