I am learning about neural networks with Kaggle tutorials. I have made a neural net to predict concrete strength and I want to display the MSE (for starters) metric after fitting the model. I have failed both with print(metrics) and plotting the metrics (displays an empty graph).
df = concrete.copy()
df_train = df.sample(frac=0.7, random_state=0)
df_valid = df.drop(df_train.index)
X_train = df_train.drop('CompressiveStrength', axis=1)
X_valid = df_valid.drop('CompressiveStrength', axis=1)
y_train = df_train['CompressiveStrength']
y_valid = df_valid['CompressiveStrength']
model = keras.Sequential([
layers.BatchNormalization(),
layers.Dense(512, activation='relu', input_shape=input_shape),
layers.BatchNormalization(),
layers.Dense(512, activation='relu'),
layers.Dropout(rate=0.3), # apply 30% dropout to the next layer
layers.Dense(512, activation='relu'),
layers.BatchNormalization(),
layers.Dense(512, activation='relu'),
layers.BatchNormalization(),
layers.Dense(1),
])
model.compile(
optimizer='sgd', # SGD is more sensitive to differences of scale
loss='mse',
metrics=[tf.keras.metrics.MeanSquaredError()]
)
history = model.fit(
X_train, y_train,
validation_data=(X_valid, y_valid),
batch_size=64,
epochs=100,
verbose=0,
callbacks=[early_stopping],
)
print(history)
pyplot.plot(history.history['mean_squared_error'])