I have a huge amount of DFs in R (>50), which correspond to different filtering I've performed, here's an example of 7 of them:
Steps_Day1 <- filter(PD2, Gait_Day == 1)
Steps_Day2 <- filter(PD2, Gait_Day == 2)
Steps_Day3 <- filter(PD2, Gait_Day == 3)
Steps_Day4 <- filter(PD2, Gait_Day == 4)
Steps_Day5 <- filter(PD2, Gait_Day == 5)
Steps_Day6 <- filter(PD2, Gait_Day == 6)
Steps_Day7 <- filter(PD2, Gait_Day == 7)
Each of the dataframes contains 19 variables, however I'm only interested in their speed (to calculate mean) and their subjectID, as each subject has multiple observations of speed in the same DF.
An example of the data we're interested in, in dataframe - Steps_Day1:
Speed SubjectID
0.6 1
0.7 1
0.7 2
0.8 2
0.1 2
1.1 3
1.2 3
1.5 4
1.7 4
0.8 4
The data goes up to 61 pts. and each particpants number of observations is much larger than this.
Now what I want to do, is create a code that automatically cycles through each of 50 dataframes (taking the 7 above as an example) and calculates the mean speed for each participant and stores this and saves it in a new dataframe, alongside the variables containing to mean for each participant in the other DFs.
An example of Steps day 1 (Values not accurate)
Speed SubjectID
0.6 1
0.7 2
1.2 3
1.7 4
and so on... Before I end up with a final DF containing in column vectors the means for each participant from each of the other data frames, which may look something like:
Steps_Day1 StepsDay2 StepsDay3 StepsDay4 SubjectID
0.6 0.8 0.5 0.4 1
0.7 0.9 0.6 0.6 2
1.2 1.1 0.4 0.7 3
1.7 1.3 0.3 0.8 4
I could do this through some horrible, messy long code - but looking to see if anyone has more intuitive ideas please!
:)