In Z3 (Python) my SAT queries inside a loop are slowing down, can I use incremental SAT to overcome this problem?
The problem is the following: I am performing a concrete SAT search inside a loop. On each iteration, I get a model (of course, I store the negation of the model in order not to explore the same model again). And also, if that model satisfies a certain property, then I also add a subquery of it and add other restrictions to the formula. And iterate again, until UNSAT (i.e. "no more models") is obtained.
I offer an orientative snapshot of the code:
...
s = Solver()
s.add(True)
while s.check() == sat:
s.check()
m = s.model()
phi = add_modelNegation(m)
s.add(phi) #in order not to explore the same model again
if holds_property(m): #if the model holds a property
s = add_moreConstraints(s,m) #add other constrains to the formula
...
The question is that, as the formula that s
has to solve gets greater, Z3 is starting to have more trouble to find those models. That is okay: this should happen, since finding a model is now more difficult because of the added restrictions. However, in my case, it is happening too much: the computation speed has been even halved; i.e. the time that the solver needs to find a new model is the double after some iterations.
Thus, I would like to implement some kind of incremental solving and wondered whether there are native methods in Z3 to do so.
I have been reading about this in many pages (see, for instance, How incremental solving works in Z3?), but only found this response in How to use incremental solving with z3py interesting:
The Python API is automatically "incremental". This simply means the ability to call the command check()
multiple times, without the solver forgetting what it has seen before (i.e., call check()
, assert more facts, call check()
again; the second check()
will take into account all the assertions from the very beginning).
I am not sure I understand, thus I make a simple question: that the response mean that the incremental SAT is indeed used in Z3's SAT? The point I think I am looking for another incrementality; for example: if in the SAT iteration number 230 it is inevitable that a variable (say b1
) is true
, then that is a fact that will not change afterwards, you can set it to 1, simplify the formula and not re-reason anything to do with b1
, because all models if any will have b1
. Is this incremental SAT of Z3 considering these kind of cases?
In case not, how could I implement this?
I know there are some implementations in PySat or in MiniSat, but I would like to do it in Z3.