I have been writing C for a decent amount of time, and obviously am aware that C does not have any support for explicit private and public fields within structs. However, I (believe) I have found a relatively clean method of implementing this without the use of any macros or voodoo, and I am looking to gain more insight into possible issues I may have overlooked.
The folder structure isn't all that important here but I'll list it anyway because it gives clarity as to the import names (and is also what CLion generates for me).
- example-project
- cmake-build-debug
- example-lib-name
- include
- example-lib-name
- example-header-file.h
- src
- example-lib-name
- example-source-file.c
- CMakeLists.txt
- CMakeLists.txt
- main.c
Let's say that example-header-file.h contains:
typedef struct ExampleStruct {
int data;
} ExampleStruct;
ExampleStruct* new_example_struct(int, double);
which just contains a definition for a struct and a function that returns a pointer to an ExampleStruct.
Obviously, now if I import ExampleStruct into another file, such as main.c, I will be able to create and return a pointer to an ExampleStruct by calling
ExampleStruct* new_struct = new_example_struct(<int>, <double>);
,
and will be able to access the data
property like: new_struct->data
.
However, what if I also want private properties in this struct. For example, if I am creating a data structure, I don't want it to be easy to modify the internals of it. I.e. if I've implemented a vector struct with a length
property that describes the current number of elements in the vector, I wouldn't want for people to just be able to change that value easily.
So, back to our example struct, let's assume we also want a double
field in the struct, that describes some part of internal state that we want to make 'private'.
In our implementation file (example-source-file.c), let's say we have the following code:
#include <stdlib.h>
#include <stdbool.h>
typedef struct ExampleStruct {
int data;
double val;
} ExampleStruct;
ExampleStruct* new_example_struct(int data, double val) {
ExampleStruct* new_example_struct = malloc(sizeof(ExampleStruct));
example_struct->data=data;
example_struct->val=val;
return new_example_struct;
}
double get_val(ExampleStruct* e) {
return e->val;
}
This file simply implements that constructor method for getting a new pointer to an ExampleStruct that was defined in the header file. However, this file also defines its own version of ExampleStruct, that has a new member field not present in the header file's definition: double val
, as well as a getter which gets that value. Now, if I import the same header file into main.c
, which contains:
#include <stdio.h>
#include "example-lib-name/example-header-file.h"
int main() {
printf("Hello, World!\n");
ExampleStruct* test = new_example(6, 7.2);
printf("%d\n", test->data); // <-- THIS WORKS
double x = get_val(test); // <-- THIS AND THE LINE BELOW ALSO WORK
printf("%f\n", x); //
// printf("%f\n", test->val); <-- WOULD THROW ERROR `val not present on struct!`
return 0;
}
I tested this a couple times with some different fields and have come to the conclusion that modifying this 'private' field, val
, or even accessing it without the getter, would be very difficult without using pointer arithmetic dark magic, and that is the whole point.
Some things I see that may be cause for concern:
- This may make code less readable in the eyes of some, but my IDE has arrow buttons that take me to and from the definition and the implementation, and even without that, a one line comment would provide more than enough documentation to point someone in the direction of where the file is.
Questions I'd like answers on:
- Are there significant performance penalties I may suffer as a result of writing code this way?
- Am I overlooking something that may make this whole ordeal pointless, i.e. is there a simpler way to do this or is this explicitly discouraged, and if so, what are the objective reasons behind it.
Aside: I am not trying to make C into C++, and generally favor the way C does things, but sometimes I really want some encapsulation of data.