I would like to calculate marginal effects for this logistic model with clustered standard errors which I computed with miceadds::glm.cluster.
fullmodel3 <- miceadds::glm.cluster(data = SDdataset17,
formula = stigmatisation_dummy_num ~ gender + age +
agesquared + education_new + publicsector +
retired + socialisation_sd + selfplacement_num +
years_membership + voteshare,
cluster = "voteshare", family = "binomial")
Given that I am not using glm(), most functions I have seen around do not work.
Any suggestions?