I have a dataframe that has more than 50 columns, and I want to group by this dataframe with all columns except one column with the name of "logg_overall_assess_current". I want to find the mean of this variable. Below is a sample of dataframe
structure(list(Bedroom = c(1, 2, 1, 2, 1), logg_overall_assess_current = c(13.1495893636579,
13.4744277087854, 13.3046849341983, 13.7255858504363, 13.2321142413634
), TypeDwel1.2.Duplex = c(0, 0, 0, 0, 0), TypeDwelApartment.Condo = c(1,
1, 1, 1, 1), TypeDwelOther = c(0, 0, 0, 0, 0), TypeDwelTownhouse = c(0,
0, 0, 0, 0), Age_new.70 = c(0, 0, 0, 0, 0), Age_new0.1 = c(0,
0, 0, 0, 0), Age_new16.40 = c(1, 1, 1, 1, 1), Age_new2.5 = c(0,
0, 0, 0, 0), Age_new41.70 = c(0, 0, 0, 0, 0), Age_new6.15 = c(0,
0, 0, 0, 0), LandFreehold = c(1, 1, 1, 1, 1), LandLeasehold.prepaid = c(0,
0, 0, 0, 0), LandOthers = c(0, 0, 0, 0, 0), cluster_K_mean.1 = c(0,
0, 0, 0, 0), cluster_K_mean.2 = c(0, 0, 0, 0, 0), cluster_K_mean.3 = c(0,
0, 0, 0, 0), cluster_K_mean.4 = c(1, 1, 1, 1, 1), Sold.Year.2018 = c(0,
0, 0, 0, 0), Sold.Year.2019 = c(1, 1, 1, 1, 1), Sold.Year.2020 = c(0,
0, 0, 0, 0), S.A.Cambie = c(0, 0, 0, 0, 0), S.A.Champlain.Heights = c(0,
0, 0, 0, 0), S.A.Coal.Harbour = c(0, 0, 0, 0, 0), S.A.Collingwood.VE = c(0,
0, 0, 0, 0), S.A.Downtown.VE = c(0, 0, 0, 0, 0), S.A.Downtown.VW = c(1,
1, 1, 1, 1), S.A.Dunbar = c(0, 0, 0, 0, 0), S.A.Fairview.VW = c(0,
0, 0, 0, 0), S.A.False.Creek = c(0, 0, 0, 0, 0), S.A.Fraser.VE = c(0,
0, 0, 0, 0), S.A.Fraserview.VE = c(0, 0, 0, 0, 0), S.A.Grandview.VE = c(0,
0, 0, 0, 0), S.A.Grandview.Woodland = c(0, 0, 0, 0, 0), S.A.Hastings = c(0,
0, 0, 0, 0), S.A.Hastings.Sunrise = c(0, 0, 0, 0, 0), S.A.Kerrisdale = c(0,
0, 0, 0, 0), S.A.Killarney.VE = c(0, 0, 0, 0, 0), S.A.Kitsilano = c(0,
0, 0, 0, 0), S.A.Knight = c(0, 0, 0, 0, 0), S.A.Main = c(0, 0,
0, 0, 0), S.A.Marpole = c(0, 0, 0, 0, 0), S.A.Mount.Pleasant.VE = c(0,
0, 0, 0, 0), S.A.Mount.Pleasant.VW = c(0, 0, 0, 0, 0), S.A.Oakridge.VW = c(0,
0, 0, 0, 0), S.A.Point.Grey = c(0, 0, 0, 0, 0), S.A.Quilchena = c(0,
0, 0, 0, 0), S.A.Renfrew.VE = c(0, 0, 0, 0, 0), S.A.S.W..Marine = c(0,
0, 0, 0, 0), S.A.Shaughnessy = c(0, 0, 0, 0, 0), S.A.South.Cambie = c(0,
0, 0, 0, 0), S.A.South.Granville = c(0, 0, 0, 0, 0), S.A.South.Marine = c(0,
0, 0, 0, 0), S.A.South.Vancouver = c(0, 0, 0, 0, 0), S.A.Strathcona = c(0,
0, 0, 0, 0), S.A.University.VW = c(0, 0, 0, 0, 0), S.A.Victoria.VE = c(0,
0, 0, 0, 0), S.A.West.End.VW = c(0, 0, 0, 0, 0), S.A.Yaletown = c(0,
0, 0, 0, 0), S.A.Other = c(0, 0, 0, 0, 0)), row.names = c("198",
"319", "387", "413", "439"), class = "data.frame")
I am looking for a smart way to group by all these variables without typing their name one by one.