In this question Will a static variable always use up memory? it is stated that compilers are allowed to optimize away a static variable if the address is never taken, e.g. like following:
void f() {
static int i = 3;
printf( "%d", i );
}
- If there exists a function which takes its arguments by reference, is the compiler still allowed to optimize away the variable, e.g. as in
void ref( int & i ) {
printf( "%d", i );
}
void f() {
static int i = 3;
g( i );
}
- Is the situation different for the "perfect forwarding" case. Here the function body is empty on purpose:
template< typename T >
void fwd( T && i ) {
}
void f() {
static int i = 3;
fwd( i );
}
- Furthermore, would the compiler be allowed to optimize the call in the following case. (The function body is empty on purpose again):
void ptr( int * i ) {
}
void f() {
static int i = 3;
ptr( &i );
}
My questions arise from the fact, that references are not a pointer by the standard - but implemented as one usually.
Apart from, "is the compiler allowed to?" I am actually more interested in whether compilers do this kind of optimization?