I don't have any 'treatment' except the passage of time (date
), and 10 times points. I have a total of 43190 measurements, they are continuous binomial data (0.0 to 1.0) of the percentual response variable (canopycov
). In glm logic, this is a quasibinomial
case, but I find just only glmmPQL
in MASS
package for use, but the model is not OK and I have NA
for p-values
in all the dates. In my case, I try:
#Packages
library(MASS)
# Dataset
ds<-read.csv("https://raw.githubusercontent.com/Leprechault/trash/main/pred_attack_F.csv")
str(ds)
# 'data.frame': 43190 obs. of 3 variables:
# $ date : chr "2021-12-06" "2021-12-06" "2021-12-06" "2021-12-06" ...
# $ canopycov: int 22 24 24 24 25 25 25 25 26 26 ...
# $ rep : chr "r1" "r1" "r1" "r1" ...
# Binomial Generalized Linear Mixed Models
m.1 <- glmmPQL(canopycov/100~date,random=~1|date,
family="quasibinomial",data=ds)
summary(m.1)
#Linear mixed-effects model fit by maximum likelihood
# Data: ds
# AIC BIC logLik
# NA NA NA
# Random effects:
# Formula: ~1 | date
# (Intercept) Residual
# StdDev: 1.251838e-06 0.1443305
# Variance function:
# Structure: fixed weights
# Formula: ~invwt
# Fixed effects: canopycov/100 ~ date
# Value Std.Error DF t-value p-value
# (Intercept) -0.5955403 0.004589042 43180 -129.77442 0
# date2021-06-14 -0.1249648 0.006555217 0 -19.06341 NaN
# date2021-07-09 0.7661870 0.006363749 0 120.39868 NaN
# date2021-07-24 1.0582366 0.006434893 0 164.45286 NaN
# date2021-08-03 1.0509474 0.006432295 0 163.38607 NaN
# date2021-08-08 1.0794612 0.006442704 0 167.54784 NaN
# date2021-09-02 0.9312346 0.006395722 0 145.60274 NaN
# date2021-09-07 0.9236196 0.006393780 0 144.45595 NaN
# date2021-09-22 0.7268144 0.006359224 0 114.29293 NaN
# date2021-12-06 1.3109809 0.006552314 0 200.07907 NaN
# Correlation:
# (Intr) d2021-06 d2021-07-0 d2021-07-2 d2021-08-03 d2021-08-08
# date2021-06-14 -0.700
# date2021-07-09 -0.721 0.505
# date2021-07-24 -0.713 0.499 0.514
# date2021-08-03 -0.713 0.499 0.514 0.509
# date2021-08-08 -0.712 0.499 0.514 0.508 0.508
# date2021-09-02 -0.718 0.502 0.517 0.512 0.512 0.511
# date2021-09-07 -0.718 0.502 0.518 0.512 0.512 0.511
# date2021-09-22 -0.722 0.505 0.520 0.515 0.515 0.514
# date2021-12-06 -0.700 0.490 0.505 0.499 0.500 0.499
# d2021-09-02 d2021-09-07 d2021-09-2
# date2021-06-14
# date2021-07-09
# date2021-07-24
# date2021-08-03
# date2021-08-08
# date2021-09-02
# date2021-09-07 0.515
# date2021-09-22 0.518 0.518
# date2021-12-06 0.503 0.503 0.505
# Standardized Within-Group Residuals:
# Min Q1 Med Q3 Max
# -6.66259139 -0.47887669 0.09634211 0.54135914 4.32231889
# Number of Observations: 43190
# Number of Groups: 10
I'd like to correctly specify that my data is temporally pseudo replicated in a mixed-effects, but I don't find another approach for this. Please, I need any help to solve it.